

CONTENU:

1- LEXIQUE de termes couramment employés

2- GENERALITES:

Analyse scalaire ou vectorielle ... quezaquo?

Principe: mesures en réflexion et transmission

Benchmark du marché des analyseurs scalaires d'occasion

Applications

3- APPLICATION AU SCALAIRE MARCONI 6500

Rôle du splitter 3 dB

Nécessité d'un pont ou coupleur additionnel

Choix du pont directif

Choix du coupleur directif (même bidirectionnel)

4- INITIALISATION du SCALAIRE MARCONI 6500

Branchements arrière - - initialisation sweep et scalaire

Initialisation des sondes de mesure

Correspondance bornes de fréquence maximales haute & basse avec celles du sweep

Balayage de la portion utile de bande

5- MESURES de GAIN et d'ADAPTATION sur MARCONI 6500

Configurations respectives, avec signal de référence

Calibration simultanément en gain et adaptation

Vérification d'une bonne calibration

Montage et mesure du DUT

Vérification de la véracité de la mesure sur DUT

6- MESURES de PERTES de CABLES COAXIAUX sur MARCONI 6500

7- MESURES DE P1dBc (incomplet)

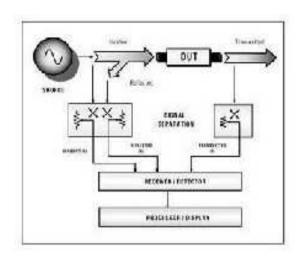
1- Petit lexique des termes courants

Terme utilisé	Acronyme	Traduction, explication
VNA	Vector signal analyser	=Analyseur vectoriel
SNA ou scalaire	=VNA simplifié	Mesure uniquement du terme module
Sweep		=Vobulateur
Plugin		Tiroir RF pour sweep
Thru	= à travers	Liaison directe entrée / sortie
Short	Court-circuit de qualité (APC-7, N, APC-3.5)	Elément coaxial de calibration avec un court-circuit parfait en RF
Open	Circuit ouvert de qualité (APC-7, N, APC-3.5)	Elément coaxial de calibration totalement ouvert
Splitter 3 dB		Coupleur divisant le signal RF en 2 parties égales. L'une sert de référence
S21, S12	S scattering parameter	Gain de sortie par rapport à l'entrée, puis l'inverse
S11, S22	S scattering parameter	Adaptation à l'entrée, puis à la sortie
Directivité		Isolation de la branche réfléchie par rapport à l'entrée (viser 40 dB)
DUT	Device under test	=Application à mesurer
Isolation		=Gain à l'envers (entrée par rapport à la sortie) ou S12
Linéaire		« Toute la puissance entrante se retrouve intégralement à la sortie »
Coupleur bidirectionnel		=Coupleurs incident et réfléchi dans le même coffret
SWR	Standing wave ratio	=TOS
VSWR	Voltage standing wave ratio	
SWR bridge		Pont directionnel
Gold	Référence étalon	Etalon aux caractéristiques totalement maîtrisées et reproductibles
P1dBc		Puissance de sortie quand le gain linéaire compresse de 1 dB
TDR	Time domain reflectometry	Visualisation d'un défaut sur un câble coaxial par rapport à la source
Nf	Noise figure	Figure de bruit
ENR	Electrical noise ratio	

2- Généralités

Analyse scalaire ou vectorielle ... quezaquo?

- Un analyseur scalaire est un analyseur vectoriel simplifié (engl.VNA) ne mesurant que le module.
- Pour des raisons de côuts, la mesure de phase est omise (pas d'abaque de Smith)
- La calibration initiale s'effectue en :
 - Transmission : liaison directe « thru » entre sortie RF et détecteur approprié
 - <u>Réflection</u>: utilisation d'éléments de calibration large bande avec : élément court-cicuit ou <u>short</u> puis élément cicuit ouvert <u>open</u>


Le coupleur additionnel sera :

- large bande
- le plus plat possible
- de directivité >40 dB à l'intérieur de la bande de mesures

NB : sur un VNA, la calibration nécessite en plus une charge additionnelle 50 Ω large bande

Principe : mesures en réflexion et transmission

Example: 8757D

requires external detectors, couplers, bridges, splitters

· good for low-cost microwave scalar applications

Benchmark du marché des analyseurs scalaires d'occasion:

Marques	Modèles	Avantages	Inconvénients
HP / Agilent	Famille 8757 et suivants	-Coupleur directionnel très large bande avec détection réfléchie incorporée -2 détecteurs suffisent	-Dynamique basse restreinte (modulation AC 23 kHz sweep obligatoire) -Splitter 3 dB + coupleur directionnel de la marque légèrement encombrant
Wiltron / Anritsu (Meilleur compromis)	Famille 360 et suivants	-Excellent coupleur à haute directivité >40 dB (autotester à sortie S11 sur câble dédicacé) -2 détecteurs suffisent -Encombrement minimal	Rien à 1ère vue !!
Marconi	Famille 6500 et suivants	-Plus récent -avec 3 détecteurs à grande dynamique de -50 à +16 dBm -Liaison vers sweep: maître <u>ou</u> esclave	Coupleur additionnel indispensable (non fabriqué par Marconi) Recours à coupleur large bande à haute directivité (très encombrant) ou Wiltron SWR bridge (sortie S11 en RF)

Prévoir un sweep compatible genre HP 8620a ou HP 8350b ou équivalent + coupleur 3 dB large bande

HP 8756a

HP 8757a

Wiltron 360

Wiltron 560

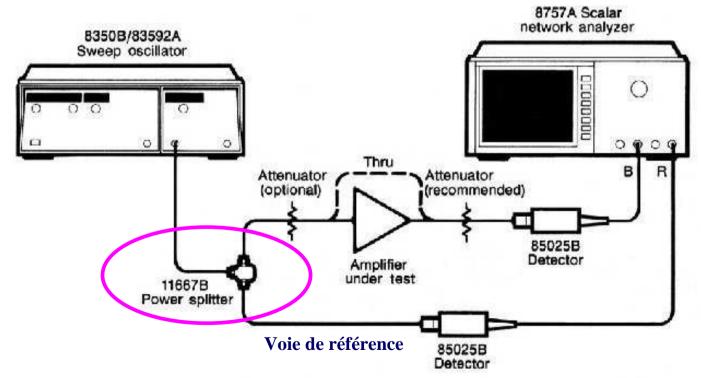
Marconi 6500

Applications:

- Mesures gain et adaptation d'amplis linéaires sur plusieurs octaves
- Calage d'amplis à bande étroite
- Mise au point de filtres sélectifs
- Pertes de câbles coaxiaux
- Mesures de puissance Pout fonction de Pin et compression P1dBc
- Comparaison des caractéristiques entre 2 objets pratiquement identiques
- Possibilité de TDR sur certains modèles ... à vérifier

Chez HP/Agilent ou Wiltron/Anritsu, chacune des marques fournit absolument tous les accessoires périphériques indispensables au bon fonctionnement d'un analyseur scalaire.

Mais Marconi n'a pas jugé utile de fabriquer son propre *pont directif*, élément clé de voûte indispensable à son fonctionnement (sauf ses propres détecteurs).


Pour compléter son banc, le client est alors contraint de consulter la concurrence et d'opter parmi l'une des 3 options suivantes:

- Pour 30 MHz<F<1 GHz (prise en main du Marconi) : coupleur directif passif faible côut à bande très étroite, mais à bonne directivité ou isolation - également 2ème couleur directif pour F<30 MHz à bonne directivité
- Pour 50 MHz<F< 2.5 GHz : choix entre pont directif passif (SWR bridge) ou coupleur passif additionnel
- Pour 2<F<18 ou 26.5 GHz : forcément 2ème SWR bridge ou coupleur passif

En choisissant Marconi, le coût additionnel de ces coupleurs rallonge encore l'addition finale – dommage!

Splitter 3 dB, pourquoi faire?

- Indispensable quelle que soit la marque de l'analyseur scalaire utilisé
- Sert à garder la calibration intacte à puissance RF variable
- La 2ème branche sert à connecter le détecteur de référence
- Perte sur chaque voie 6 dB, dissymétrie entre chaque branche < +-0.3 dB
- N'importe quelle marque convient pourvu que le coupleur soit large bande (Weinschel, HP, etc...)
- Attention: les modèles Mini-Circuits sont à bas prix mais leur bande passante est réduite à un octave

15

Choix entre pont (SWR bridge) et coupleur directionnel large bande :

- Dans les deux cas il est impossible de balayer de 10 MHz à 18 GHz en continu
- Forcément 2 sous-bandes obligatoires : 0.1-2 GHz et 2-18 GHz
- Pont directionnel instrumentation sur table bien plus aérée

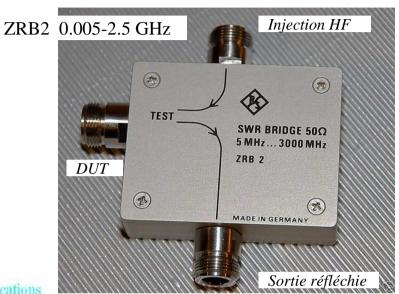
Si choix d'un pont large bande (SWR bridge) : 3 possibilités

Anritsu / Wiltron	Modèles	Bande passante	Directivité (dB)	Sortie réfléchie
Autotester	560-97A50	0.01 – 18 GHz	36	Câble dédicacé scalaire Wiltron (inutilisable)
SWR bridge	60A50 97A50	0.005 – 2 GHz 0.01 – 18 GHz	36 36	Sortie DC sur fiche BNC (inutilisable)
SWR bridge	60A50 87A50 87A50-1 64A50	0.05 - 3 GHz 2 - 18 GHz 3 - 8 GHz Idem	40 35 38	Sortie RF directe sur fiche N femelle

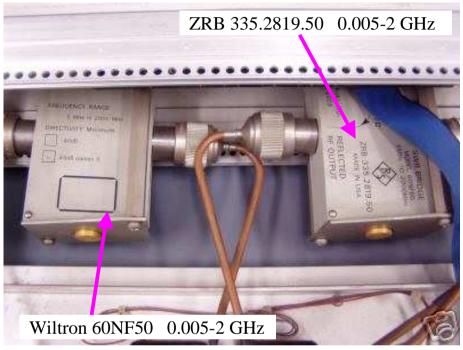
Modèles 27A50=entrée RF en fiche APC7, 50 Ω - - - 27N50=fiche N mâle, 50 Ω - - - 27NF50=fiche N femelle

HP/	HP 8502a	0.005 – 1.3 GHz	40	Sortie RF directe sur fiche N
Agilent	HP 8503a	(exploitables jusqu'à 1.7 GHz)		Splitter 3 dB et atténuateur
	HP 85044a	0.003 – 3 GHz		incorporés

ATTENTION: versions A en 50 Ω et **B en 75 \Omega**

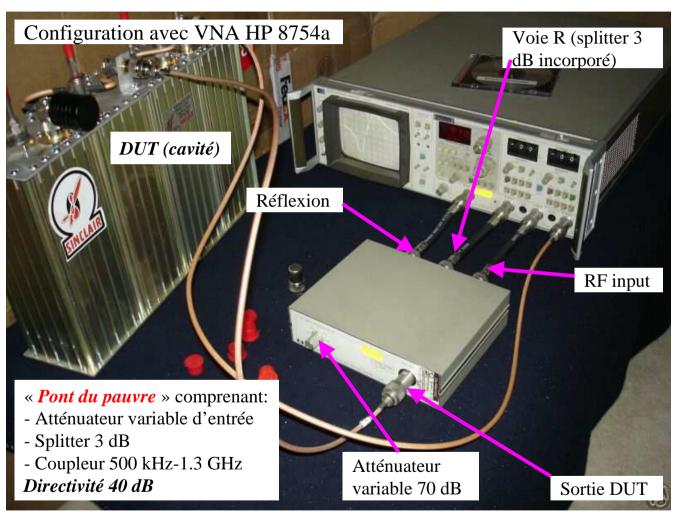

Rohde&	ZRB2	0.005 - 3 GHz	40	Sortie RF directe sur fiche N
Schwarz				femelle – prochain investissement

SWR bridge Wiltron à sortie réfléchie en RF:


19

SWR bridge Rohde & Schwarz:

Specifications


	Precision model 50 Ω	Standard model 50 Ω	Standard model 75 Ω
Frequency range	5 to 3000 MHz	5 to 2500MHz	5 to 2000 MHz
Characteristic impedance	50 Ω	50 Ω	75 Ω
Directivity	≥46 dB up to 2 GHz, ≥40 dB up to 2.5 GHz, ≥34 dB up to 3 GHz	≥40 dB	≥40 dB
Return loss at test port	≥26 dB up to 2.5 GHz, ≥22 dB up to 3 GHz	- 8	≥20 dB up to 1.5 GHz, ≥18 dB up to 2 GHz
Measurement error (r = magnitude of measured reflection coefficient)	0.005 + 0.05 r 2 up to 2 GHz, 0.01 + 0.05 r 2 up to 2.5 GHz, 0.02 + 0.08 r 2 up to 3 GHz	0.01 + 0.07 r 2	0.01 + 0.1 r 2 up to 1.5 GHz, 0.01 + 0.13 r 2 up to 2 GHz
Insertion loss (5 MHz)	- 17		
Total	13 dB	13 dB	14 dB
Input - test port	7 dB	7 dB	8 dB
Test port - output	6 dB	6 dB	6 dB
Power-handling capacity	0.5 W	0.5 W	0.5 W

Configuration montée en boîte de paramètres-S référence ZPV-Z5 avec option 1, directivité 45 dB dans un analyseur vectoriel R&S

SWR bridge HP 8502a ou 85044a utilisation universelle:

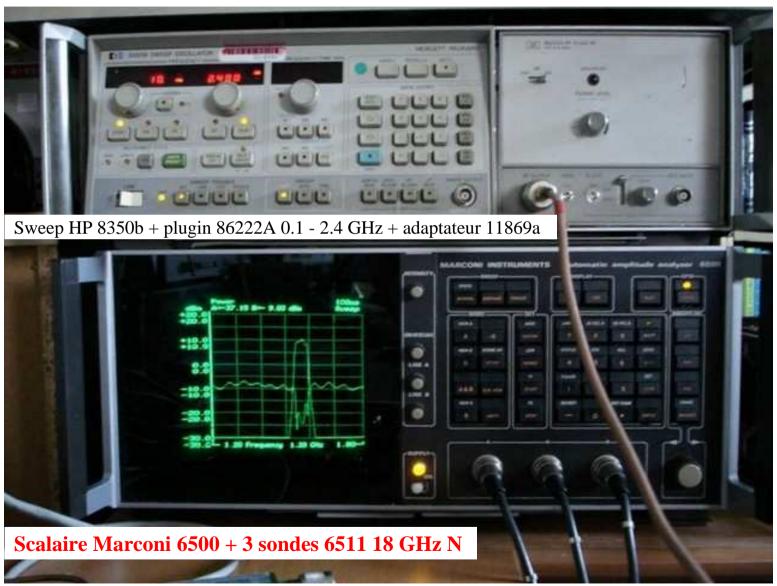
Si choix d'un coupleur large bande mono ou bidirectionnel:

- Impossible de balayer 10 MHz à 18 GHz avec un coupleur large bande unique !!!
- Le choix d'un coupleur *bidirectionnel* économise l'achat d'un coupleur large bande 3 dB utilisé pour la référence (si puissance de sortie ajustable)
- Couplage réfléchi visé au moins 10 dB, idéalement 20 dB
- Egalement attention à la directivité (40 dB visés)

Meilleur compromis pour les mesures de 2 MHz à 18 GHz:

- 2-100 MHz : coupleur 10 dB Merrimac CR-10-50 - directivité de seulement 30 dB!!
- 0.1-2 GHz : coupleur 20 dB bidirectionnel HP 778D - directivité 40 dB
- 2-18 GHZ : coupleur 20 dB bidirectionnel HP 11692D - directivité 40 dB

Coupleurs large bande bidirectionnels –20 dB:



En résumé:

- Un pont directionnel (SWR bridge) est un coupleur directionnel aux dimensions largement réduites.
- Mais sa mise au point est artisanale et extrèmement ardue
- Beaucoup plus cher qu'un coupleur traditionnel

Branchement arrière entre sweep et scalaire:

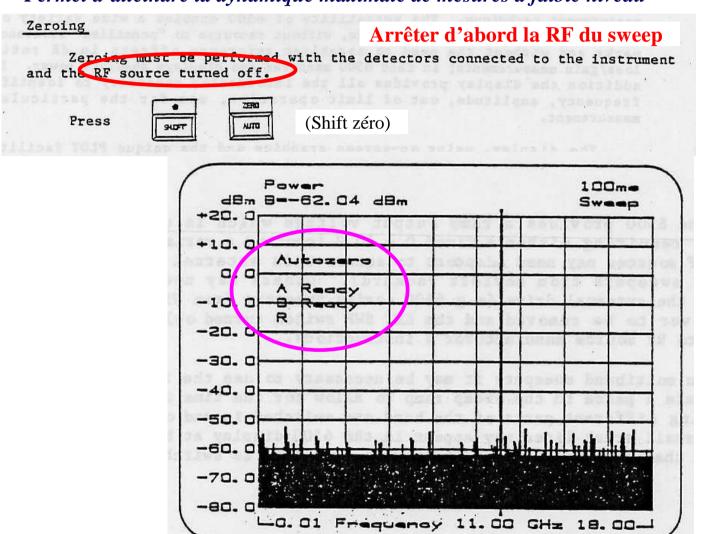
- Brancher un câble BNC entre fiches SWEEP OUT/IN « +10V DC max » et Marconi RAMP « Fixed 0-10V »
- Allumer dans l'ordre **d'abord le sweep**, puis le scalaire

- Si le tiroir est multibande, relier également la fiche « SYNC » à l'une des fiches « Z BLANK »
- Possibilité de raccord à l'aide d'un cordon GPIB
- Contrairement aux scalaires Wiltron ou HP ou seul le sweep est maître, le Marconi 6500 peut être configuré en maître ou esclave

Initialisation sweep et scalaire:

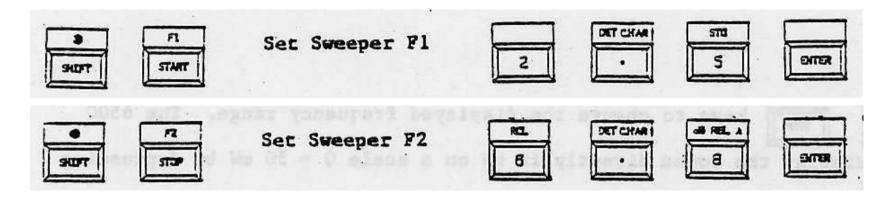
Sweep HP 8350b: bouton « Sweep ext » allumé

L'option 001 permet de descendre le niveau bas de -30 jusqu'à -90 dBm et évite l'emploi d'atténuateurs additionnels

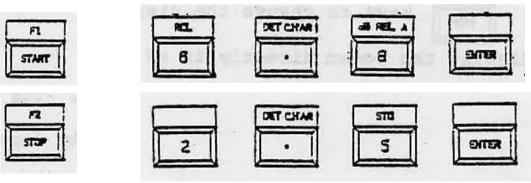

Marconi 6500 : address 31 « talk only »

bouton « *Line* »

Initialisation des sondes de mesure:


Permet d'atteindre la dynamique maximale de mesures à faible niveau

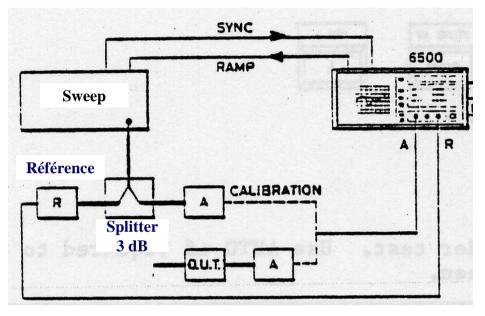
Remettre la RF sur le sweep


Correspondance bornes de fréquence maximales haute & basse avec celles du sweep:

Bornes maximales du tiroir utilisé (rampe 0-10V): toujours entrer fréquence en GHz

Balayage de la portion utile de bande entre F1 et F2:

Même procédure, mais sans appuyer sur le bouton SHIFT


31

5- Mesures de gain et d'adaptation sur Marconi 6500

Configurations respectives, avec signal de référence

Sweep

Référence

Reférence

ROUPLER

OPEN/SHORT

CALIBRATION

(Phase retounée de 180°)

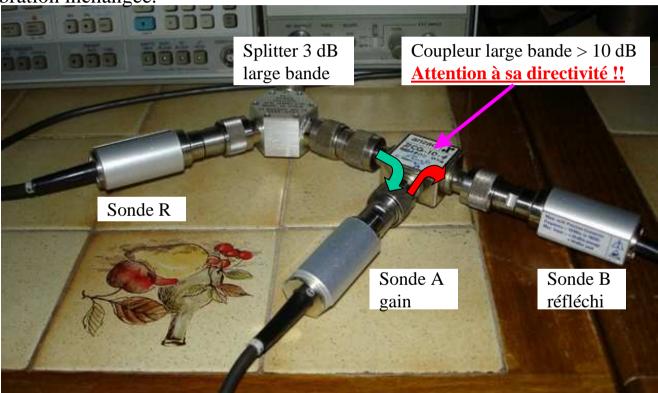
Mesure de gain

Mesure d'adaptation

Calibration en open puis short :

retourne la phase de 180°

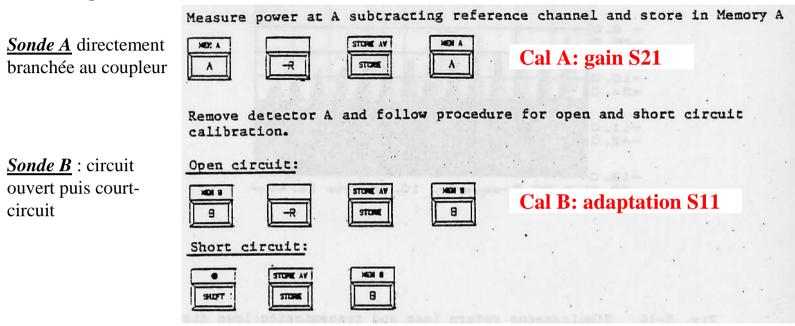
Rampe: câble BNC/BNC entre fiches « Sweep out/in +10V DC max » et Marconi « Fixed 0-10V

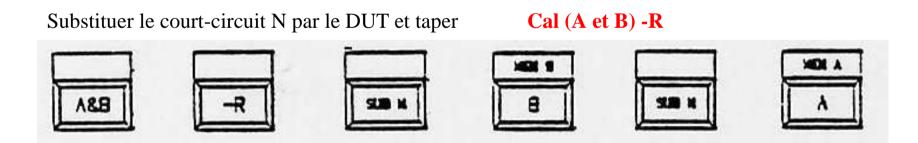

Synchro: câble BNC uniquement utile avec tiroir multioscillateur

Calibration simultanément en gain et adaptation (dB):

- La mesure de gain est inconcevable sans la mesure d'adaptation simultanée ...

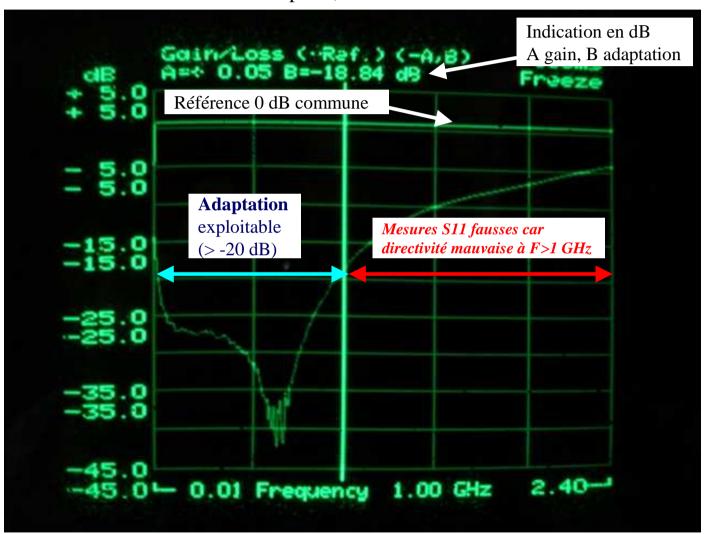
- Via un splitter 3 dB, la 3ème sonde R de *référence* permet à puissance variable de maintenir


la calibration inchangée.

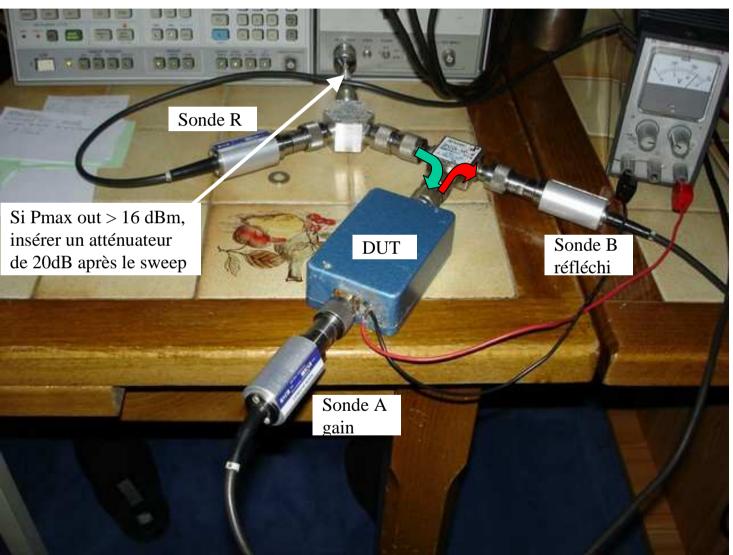


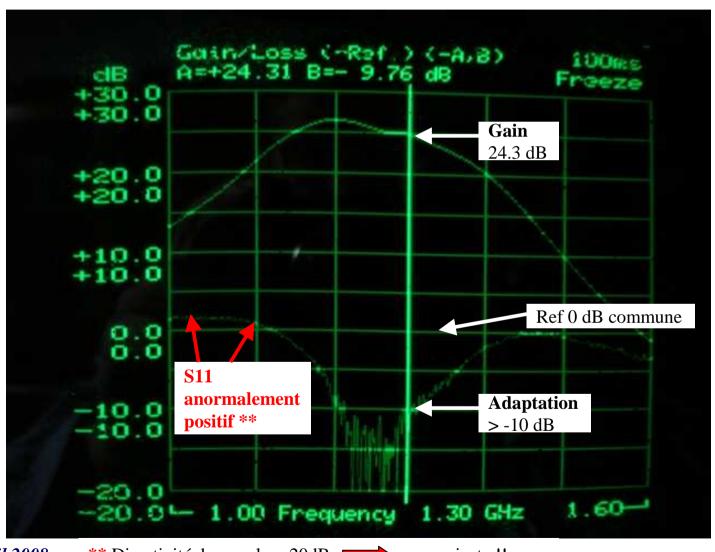
Coupleur Anzac DCG-10-4

- bande 30-1000 MHz
- couplage 11 dB
- directivité 20 dB (parfait pour dégrossir mais non adapté pour des mesures de S11 à F>1 GHz)


Montage et mesure du DUT

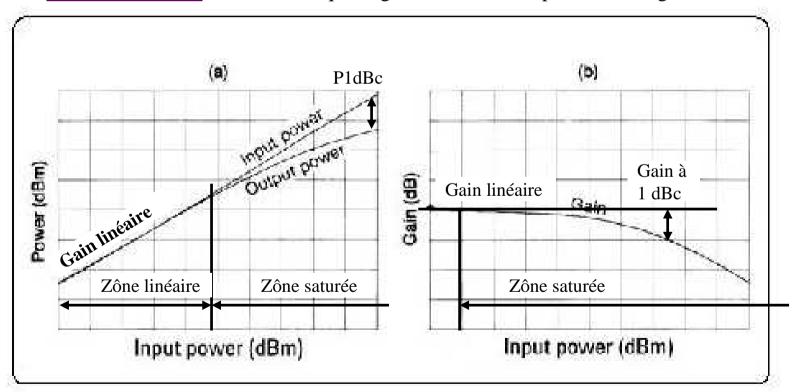
Les 2 courbes S21 et S11 sont alors visualisées simultanément sur l'écran, avec leurs échelles en dB


En rebranchant la sonde A sur le coupleur, le S21doit être de 0.00 dB et son S11 doit être > 20 dB


Vérification d'une bonne calibration :

Action	Courbe de gain S21	Courbe d'adaptation S11
Niveaux affichés	dBm et non dB!!	dBm et non dB!!
Sonde A (gain) débranchée	Niveau d'au moins –40 dB Dépend du niveau RF injecté	Droite horizontale tangente au niveau 0.00 dB Jamais de S11 positif!
Sonde A (gain) rebranchée	Droite horizontale tangente au niveau 0.00 dB	Adaptation sonde d'au moins –20 dB
Sonde A branchée et puissance RF variable	Courbe inchangée, toujours tangente au niveau 0.00 dB	Courbe inchangée, niveau d'au moins –20 dB

Montage et mesure du DUT



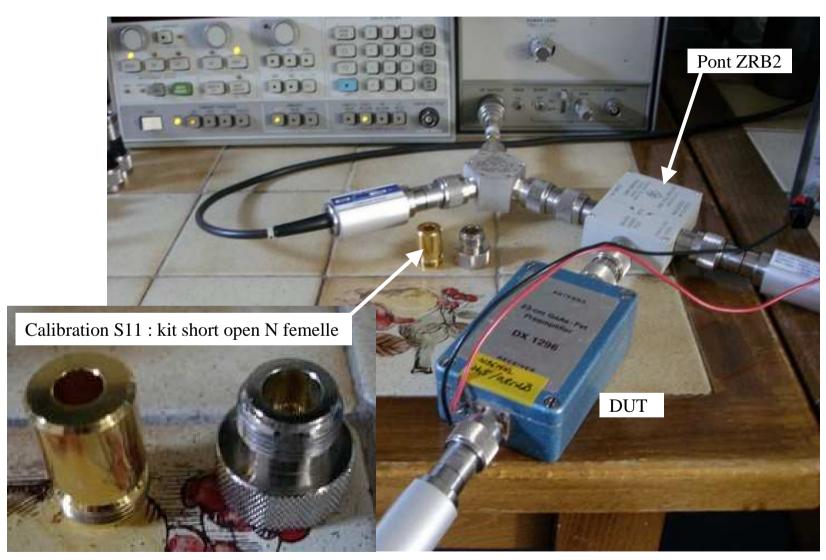
Préampli 1296 MHz faible bruit

Vérification du régime linéaire

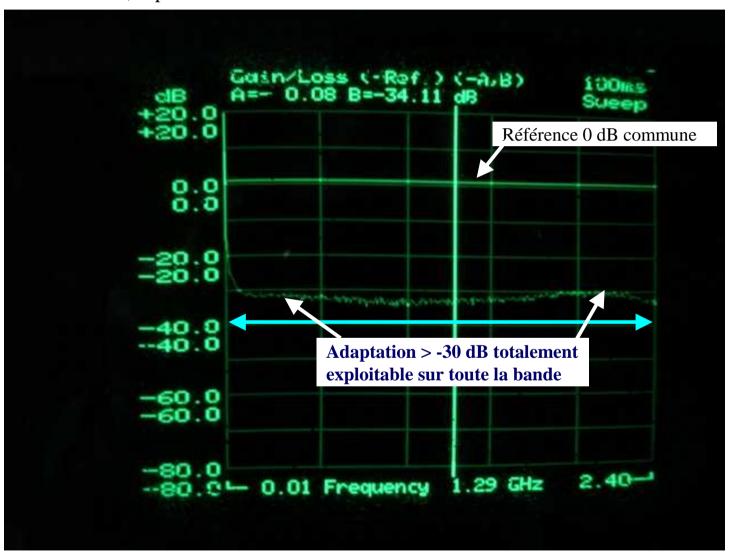
- Un ampli est linéaire lorsque la puissance d'entrée ressort intégralement à la sortie et que son gain reste constant. Sa courbe Pout fonction de Pin décrit alors une droite.
- En continuant l'injection RF, le gain commence alors à baisser jusqu'à un point ou le gain linéaire compresse alors de 1 dB. La puissance de sortie associée est alors appellée P1dBc ou puissance de sortie à 1 dB de compression
- Avec un préampli à GaAs, bien vérifier que le gain mesuré correspond bien au gain linéaire

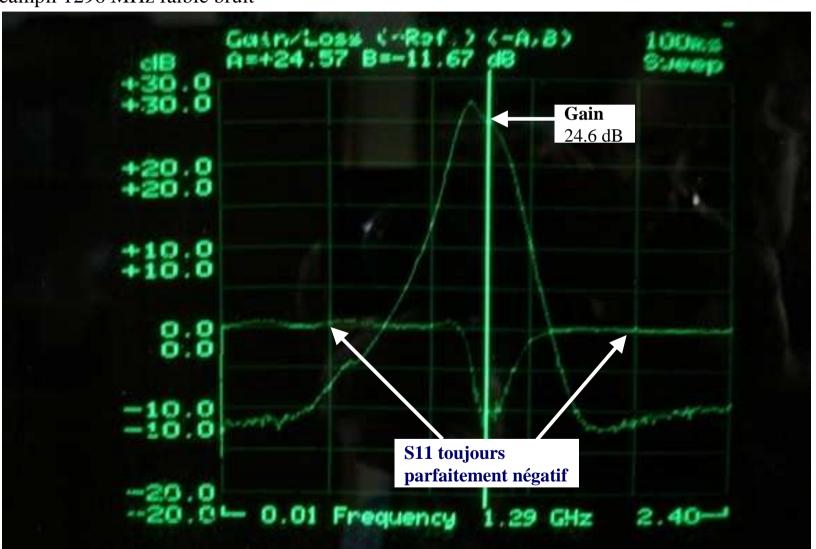
Vérification de la véracité de la mesure sur DUT :

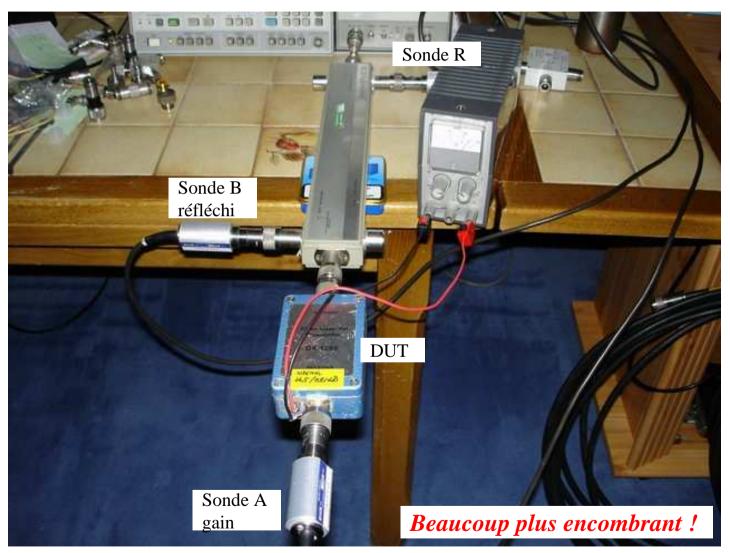
- Avant d'effectuer la mesure définitive, toujours vérifier avec un « Gold » ou étalon dont on est totalement certain
- Monter ou descendre le niveau d'injection RF ... la valeur de gain reste constante si l'on reste en régime linéaire ...
- Sur un ampli, la courbe S11 ne doit jamais devenir positive sinon son fonctionnement est malsein (oscillations)!!


41

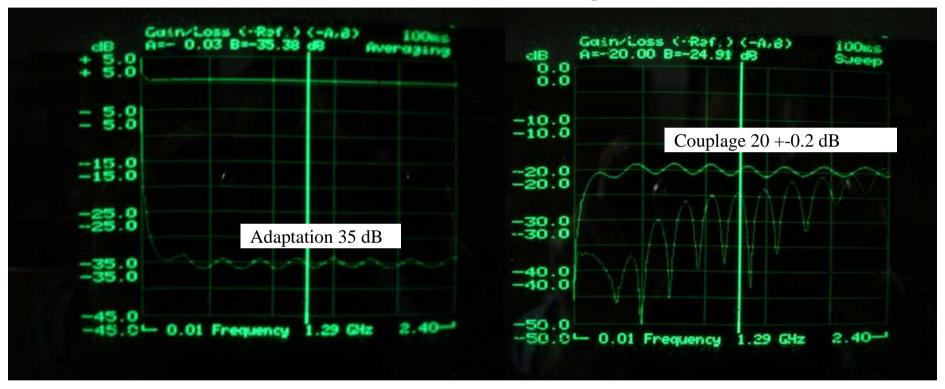
Influence d'un pont à haute directivité sur les mesures d'adaptation


Pont Rhode & Schwarz, 5 – 2000 MHz, extrait d'une boîte de paramètres-S *Directivité 46 dB*


Configuration de mesure modifiée

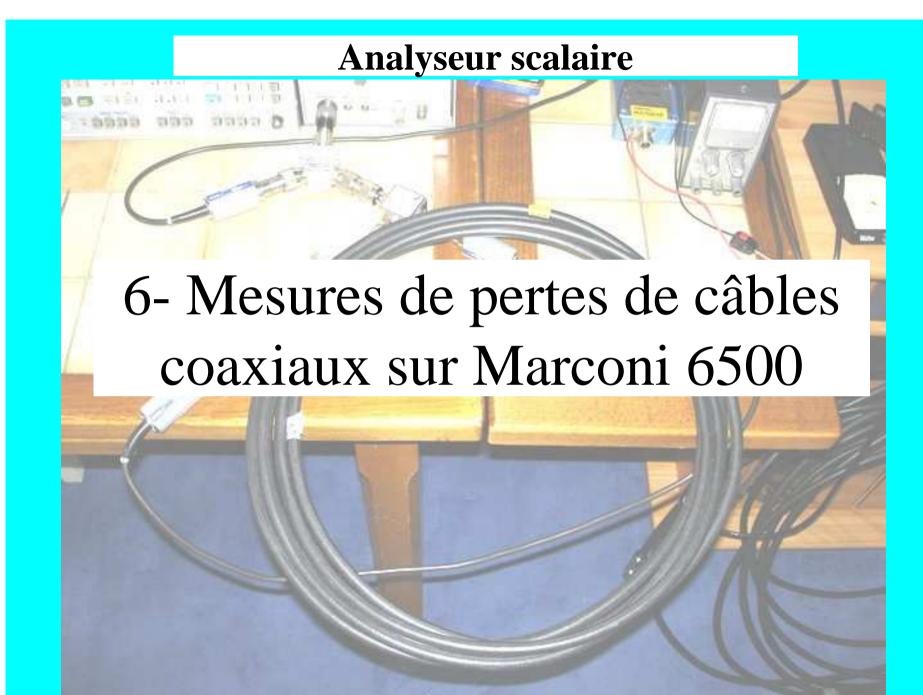

Calibration terminée, aspect final

Préampli 1296 MHz faible bruit


Mesures avec pont bidirectif HP 778D couplage 20 dB

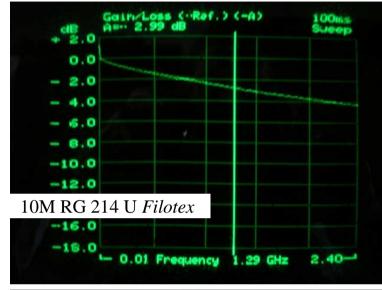
Vérification de la fonctionnalité du pont bidirectif HP 778D

Atténuation en direct


Voie couplée (sonde R)

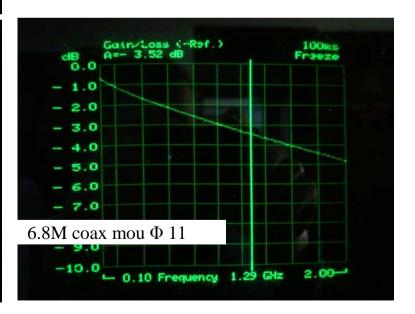
Préampli 1296 MHz faible bruit

F5DQK april 2008 48



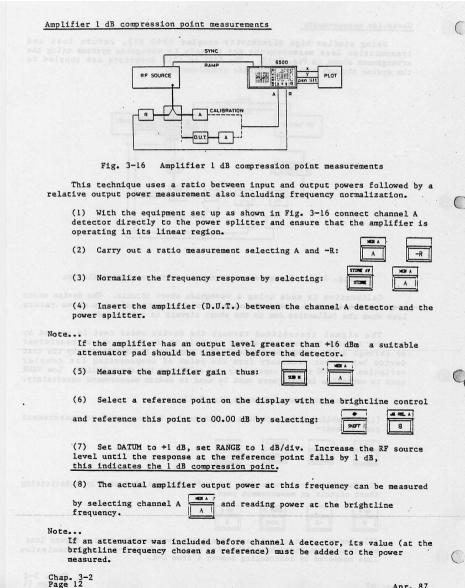
Pertes de câbles coaxiaux ECOFLEX ou AIRCOM PLUS à 1.3 GHz:




50

Pertes de câbles coaxiaux conventionnels à 1.3 GHz:

Parfaite corrélation avec les mesures sur analyseur gain/bruit HP 8970a + noise source Ailtech 7615 ENR 15 dB, réalisées à 1296 MHz



51

Calibration en P1dBc (dBm) à fréquence fixe:

Incomplet, à peaufiner

