

My first solar meases

EARTH

The last but not the last one - - release 1

Summary

-A dish S11 behaviour better than 10 dB with a good regular broadband comportment is mandatory.

-But knowing its « on air » efficiency and gain is also mandatory.

-Because an anechoïc room can't be reached by everybody, the sun meas is the best alternative

-I'd look for the quickest alternatives to be QRV, but without any meases compromises

Abstract

1/ Dish direct meas setup directly à 10 GHz with spectrum analyser

2/ Behaviour à 144 MHz of a complete 10 GHz outdoor setup with spectrum analyser G4DDK experiences

3/ Dishes meas setup à IF=144 MHz

a/ with 20 dB narrowband amp & spectrum analyser

b/ with 40 dB narrowband amps & HP power meter

4/ Dishes meas setup à IF=432 MHz

5/ Y factor measurements

6/ Sodielec shepherd-crook subsidiary aluminium peace (F4DRU)

7/ Expected & measured results

8/ Aknowledgements

1- Dish direct meases à 10 GHz with Tektronix 492P spectrum analyser

Direct meases à 10 GHz

Power measurement setup scheme

Direct meases à 10 GHz

F5DQK October 2009

2- Meases à 144 MHz with 10 GHz outdoor setup and spectrum analyser

Dynamical behaviour of a complete outdoor setup on Versatower with : -Procom dish -DB6NT 22 dB Nf=0.8 dB preamp -DB6NT 20 dB v3 transverter (10 GHz → 144 MHz)

F5DQK October 2009

Noise meas à 144 MHz

Without preamp

With 144 MHz SP-2000 preamp

Noise meas à 144 MHz

With LNA-3000a broadband preamp

- The target of how the outdoor ensemble is living is achieved

- But a spectrum analyser doesn't seem directly applicable, only for dish sun meases (not enough meas accuraty AND ripple of more than 1 dB) !

F5DQK October 2009

Noise meas à 144 MHz

G4DDK did make by this way temperature horizon plots, using Spectravue on his SDR-IQ receiver at different frequencies : from 23 cm to the 3 cm band he « can see » every obstacle around his QTH like houses, trees, etc ...

Have a look at http://www.btinternet.com/~jewell/10ghorizon.html

3- Dishes meas setup à 144 MHz

Measurements using : -a/ Spectrum analyser -b/ Power meter

-HP 435b with needle -HP 436a digital

F5DQK October 2009

a/ Sun meases with Tektro 492P spectrum analyser

Power measurement setup scheme

a/ Sun meases with Tektro 492P spectrum analyser

Noise meas à 144 MHz and SP-2000 preamp

Improper noise measurement precision with a minimum of about 0.5 dB ripple

Power measurement setup scheme à IF=144 MHz

- For optimal precision, the 1st 144 MHz amp must be seriously bandpass filtered in order to reject all transverter spuriouses like the LO and image frequencies !!

- One 144 MHz masthead preamp as 1st amp is really the quickest solution

1st measurement setup with HP 435b needle power meter

F5DQK October 2009

2nd measurement setup with HP 436b digital power meter with relative dB(REF) function

Advantage of HP 436a : the 0 dB reference level, giving directly the dB difference value !

- Far better Y precision meas achieved with dB (REF) button depressed
- 1st meas pointed to the sky

4- Dishes meas setup à 432 MHz

Measurements using the HP 436a power meter :

F5DQK October 2009

Sun meases with digital 436a power meter

- For optimal precision, the 1st 432 MHz amp must be seriously bandpass filtered in order to reject all transverter spuriouses like the LO and image frequencies !!

- One 432 MHz masthead preamp as 1st preamp is really the quickest solution

Sun meases with digital 436a power meter

Power measurement setup scheme à IF=432 MHz

To be done ASAP

5- Y factor measurement results

b/ Y factor meases

Measurements with <u>HP 435b</u> power meter and (SP-2000 + LNA-3000) chain

Sodielec Penny-feed Φ73 cm	SMA transition	Ground (dBm)	Sun (dBm)	Sky (dBm)	Y (sun-sky) dB	Y (gnd-sky) dB
	F6AJW white	-45.6	-45.5	-48.2	2.6	2.7
	F6AJW white	-45	-45	-47.8	2.8	2.8
	F6AJW white	-44	-43.8	-46.8	3.0	2.8
Sodielec shepherd crook Φ73 cm F1CNE	SMA transition	Ground (dBm)	Sun (dBm)	Sky (dBm)	Y (sun-sky) dB	Y (gnd-sky) dB
	SMA F1CNE	-41	?	-42.5	??	1.6
	F6AJW white	-47	?	-48.8	??	1.8
Sodielec shepherd crook Φ73 cm F4DRU (+Alu piece or not)	SMA transition	Ground (dBm)	Sun (dBm)	Sky (dBm)	Y (sun-sky) dB	Y (gnd-sky) dB
+ aluminium piece	F6AJW white	-45	?	-47.7	??	2.7
without aluminium piece	F6AJW white	-48.8	?	-49.2	??	0.4 !
			1			
Thomson RL-18-А (Ф60 cm Procom copy)	SMA transition	Ground (dBm)	Sun (dBm)	Sky (dBm)	Y (sun-sky) dB	Y (sun-sky) dB
	Procom gold	-45.2	-46	-47.9	1.9	1.9

F5DQK October 2009

b/ Y factor meases

Measurements with digital HP 436a digital power meter and (SP-2000 + LNA-3000) chain

Sodielec Φ 73 with shepherd crook from :	WR90 / coax transition		Trans losses à 10.4 GHz (dB)	Y (sun- sky) dB	Y (gnd- sky) dB
Original	Ν			0.4	0.6 / 0.6
F1CNE (little ring in feed)	F1C	NE's SMA	0.45	2.3	2.35 / 2.60
F4DRU (thick alu piece in feed)	F4DI	RU's N without screw	0.65	2.3	2.15 / 2.3
F4DRU (thick alu piece in feed)	F4DRU's N + optimized screw		0.4	2.82	2.65 / 2.76
F4DRU (thick alu piece in feed)	F6AJW's white SMA		0.25	2.95	2.9/3.05
F4DRU (thick alu piece in feed)	Procom SMA golded		0.18	3.15	2.98 / 3.05
F4DRU (thick alu piece in feed)	AMC1081 Atlantic microwave		< 0.1	3.25	2.95 / 3.15
Sodielec Φ 73 with penny-feed (F6AJW)		F6AJW's white SMA	0.25	3.0	2.7 / 3
		SMA orig. Procom	0.18	3.02	2.62.85
Thomson RL-18-A (Φ60 Procom copy)		F6AJW's white SMA	0.25	?	?
		SMA orig. Procom	0.18	1.85	2.65 / 2.8

RTC horn	SMA orig. Procom	0.18	0.4 ??	3.8 / 4.1
OK October 2009				2

F5DQK October 2009

6- Additional aluminium peace for the Sodielec shepherd crook adaptation

Sodielec shepherd-crook improvement with additional piece

F4DRU's design

7- Expected & measured results !!

b/ Y factor expected & measured

Expected and <u>real</u> measurement results

Prime-focus Φ (cm)	Expected Yss (dB)	Dish measured	Measured Yss (dB)
60	2.5	60 cm Procom copy	1.85
72	3	72 cm Sodielec penny-feed	3.0
90	5 à 5.2	?	?
120	7.5 à 8	?	?

Dish Φ (cm)	Prime/offset	Gain (dBi)	Y-factor	Theoric Y-factor dB
60	Offset	34.8	3.5	1.8
80	Offset	37.1	2	2
90				
120				

8- Aknowledments

Aknowledgements

Without the geat help of these hams, the sun measures weren't be possible without the help from :

- Jacques F6AJW
- Denis F1CNE
- Yoann F4DRU

Special thanks for there great contribution

References

Revue Seigy 2008 Proceeding (CJ) - Mesures ciel froid/sol et soleil/ciel froid – Gilles F5JGY