Transverters 24 GHz DB6NT MK1 et MK3: utilisation en FI 432?

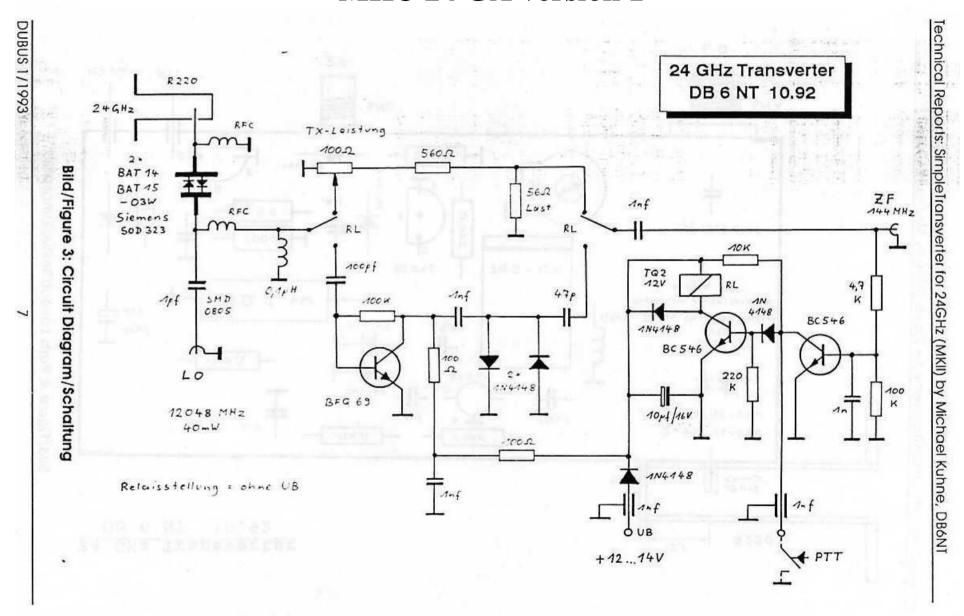
But

Les modèles DB6NT à FI 144 MHz, le sont-ils également en FI=432 MHz ?

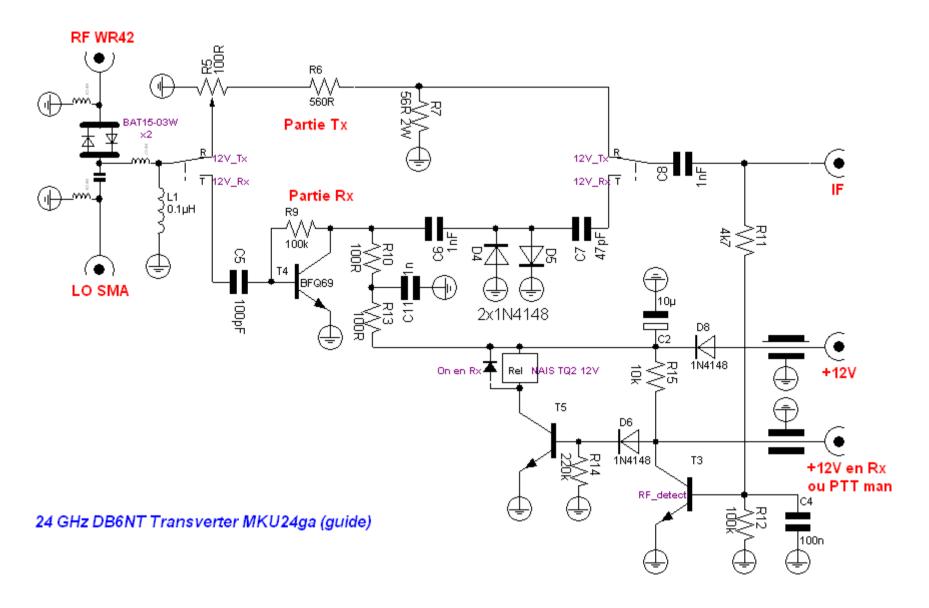
En regardant ses schémas d'application 24 GHz, rien ne devrait normalement s'y opposer!

Au contraire de la toute dernière ligne de transverters 24 GHz ou DB6NT demande au client son choix de FI 144 ou 432 <u>avant la commande</u>, les notes d'application des modèles antérieurs semblent plutôt orientées vers 144 MHz. Néanmoins le doute a toujours persisté dans mon esprit!

A titre d'exemple, l'ensemble tranverter 24 GHz complet de Jacques F6AJW monté à base de modules classiques DB6NT et prévu d'origine en Fl=432 MHz, montra tout de suite en réception un sérieux manque de gain de conversion

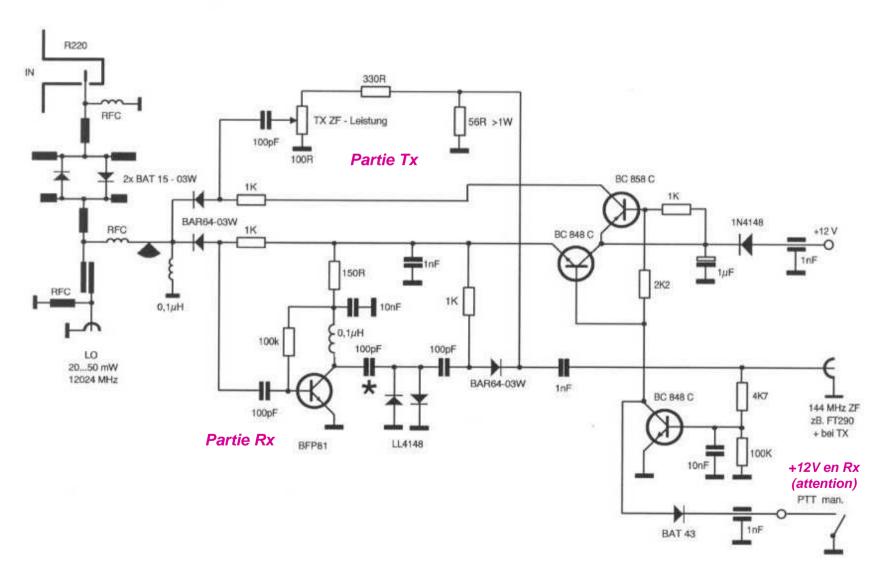

Plan

- 1- Comparaison entre les modèles DB6NT :
 - MK1 à commutation relais ← → MK3 à diodes PIN avec côté RF la connectique WR42 ou SMA
- 2- <u>Réparation</u> initiale d'un transverter DB6NT MK3 HS (diodes PIN version SMA), câblé par un OM allemand malheureusement défunt
- 3- Mesures comparatives en Rx (sans filtre comme celles de DB6NT)
- 4- Pour mémoire, vues intérieures de l'exemplaire MK3 d'André F1PYR
- 5- Mesures comparatives en Tx (sans puis avec filtre)
- 6- Remerciements

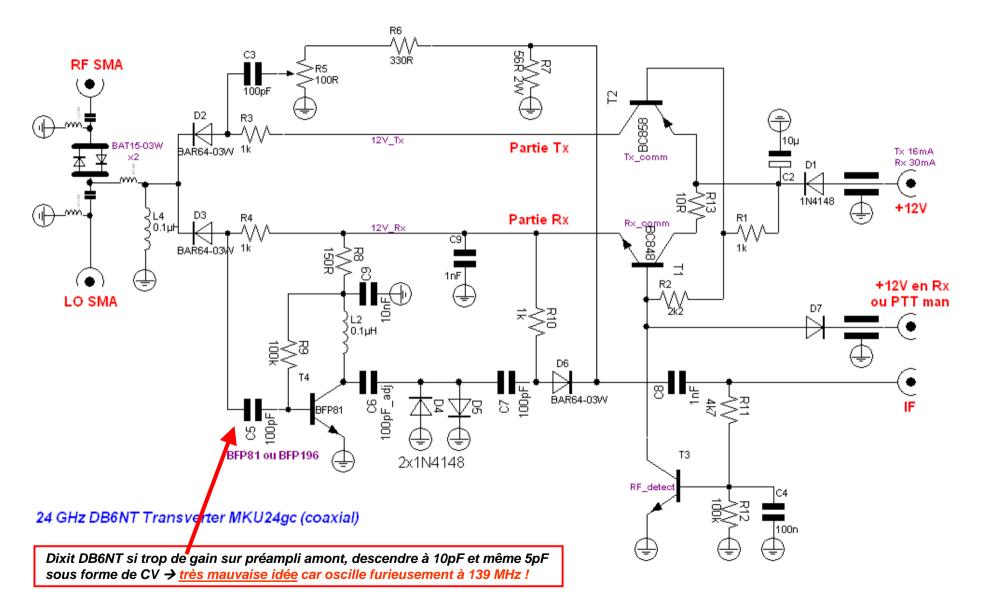

1- Comparaison transverters 24 GHz versions MK1 et MK3

- MK1 : entrée RF plutôt en WR42, commutation à relais
- MK3 : plutôt entièrement en SMA, commutation à diodes PIN Comparaison des 2 synoptiques

MKU 24 GA version 1



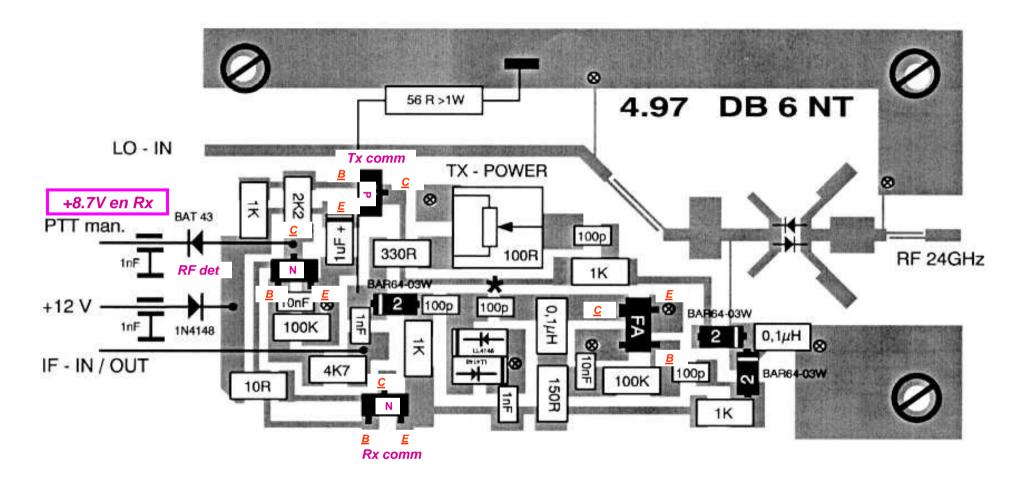
MKU 24 G version 1



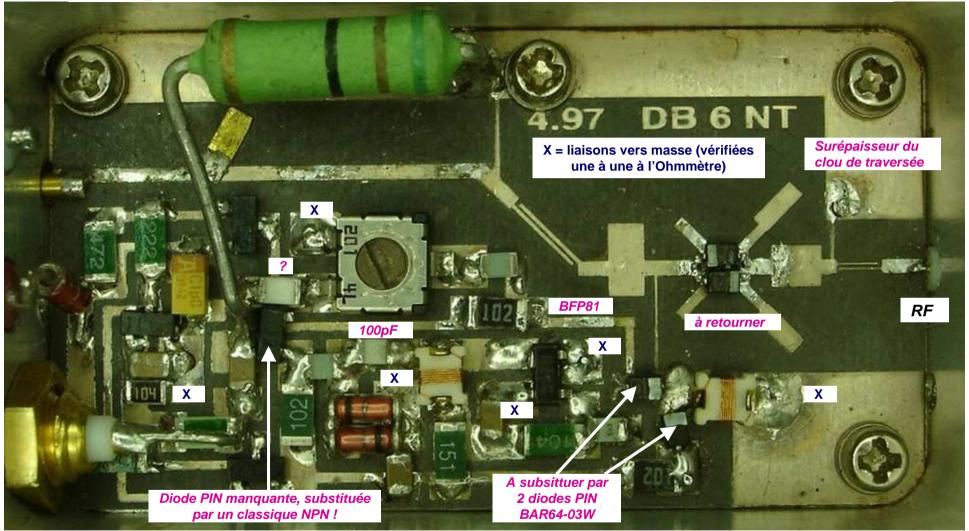
24 GHz Transverterkopf MK3 DB 6 NT 3.2000

Version guide ou entièrement coaxiale

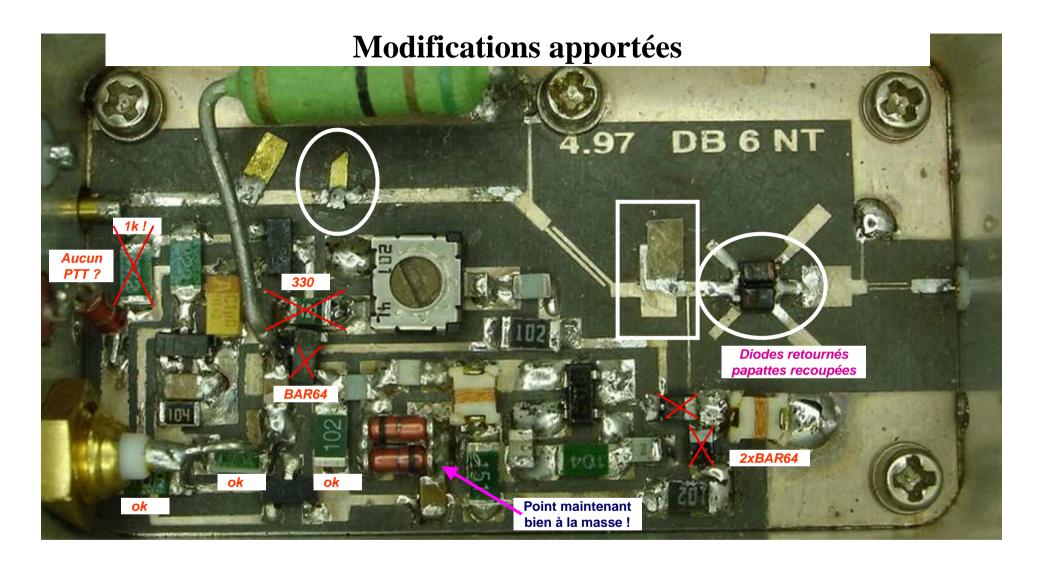
MKU 24 GC version 3


2- Réparation de ma version MK3 à diodes PIN totalement inutilisable

- Implantation comparée par rapport à l'exemplaire de F1PYR
- Réparation du module :

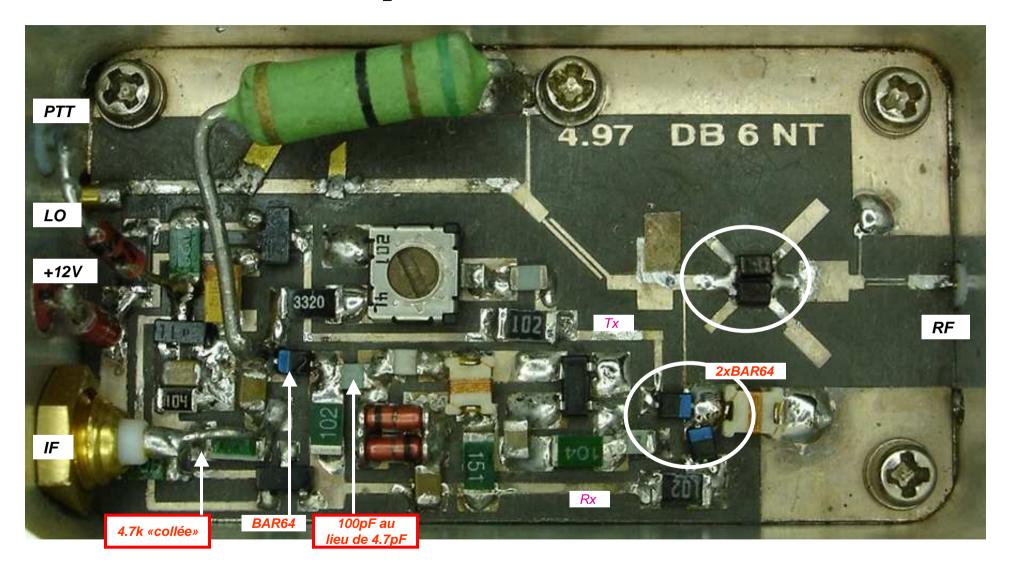

Commutation Tx via FT817nd inopérante

Enorme oscillation à 133 MHz et P=0dBm, module seul alimenté!

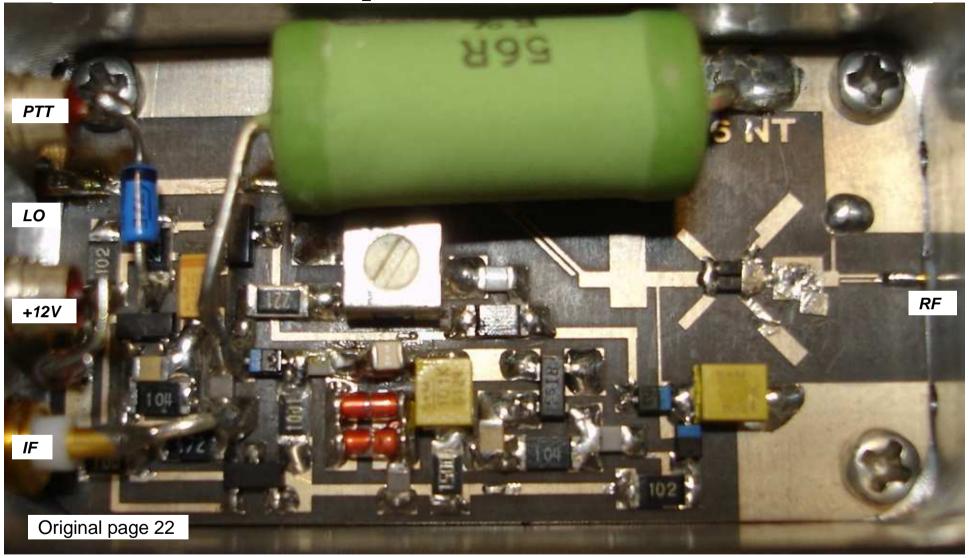

Implantation composants

Après réception (nettoyage au solvant indispensable)

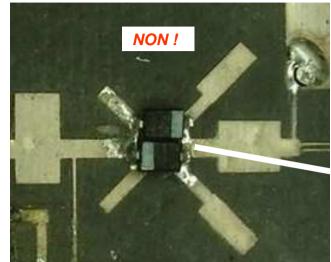
- 1- Oscillation Rx si U<=13V vers 133 MHz + nombreux harmoniques
- 2- à FI=144 MHz, gain seulement 7.5dB, Nf=16.6dB

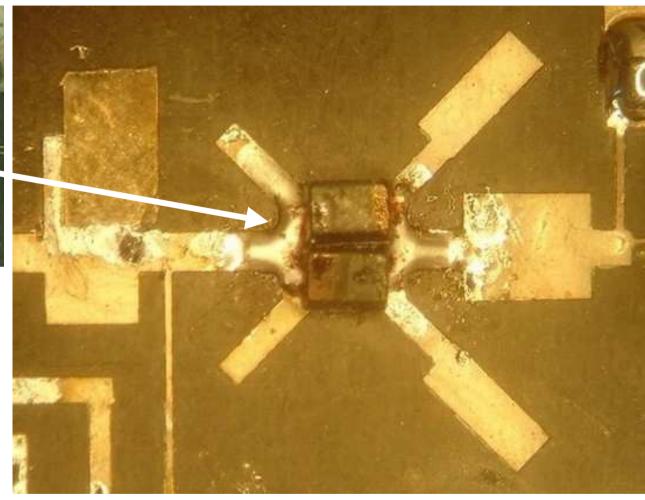


- 1- Retournement des diodes mélangeuses + papattes coupées au plus juste (préconisé par DB6NT)
- 2- Rajout du stub avant mélange très critique :


 limite l'auto-oscillation mais ne la supplime malheureusement pas

 optimise gain + bruit de conversion → sous 12V et 24.050 GHz gain=12.5dB, Nf=9.75dB
- 3- Rajout d'un 2ème stub sur ligne OL → +0.7dB supplémentaires sur le gain


Résistances remplacées + 3 vraies BAR64 soudées



Pour mémoire : comparaison avec le MKU 24GC de F1PYR

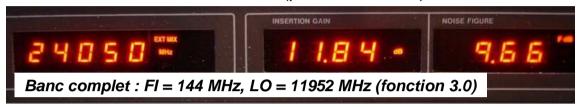
Zoom sur diodes mélangeuses retournées + stub aval rajouté

Résumé des modifications apportées jusqu'à fonctionnement correct

Enorme travail qui aurait pu m'être épargné par le propriétaire précédent, mais qui a eu l'avantage de m'appendre énormément de choses.

En voici le résumé :

- 1- Vérification de tous les « clous de masse » → certains étaient inactifs!!
- 2- Retournement des diodes mélangeuses + papattes coupées au plus juste (*préconisé par DB6NT*)
- 3- Rajout de 2 stubs sur ligne OL → +0.7dB supplémentaires sur le gain
- 4- Substitution des 2 diodes initiales «théoriquement PIN» + la jonction base/émetteur de transistor, par 3 véritables BAR64-03W (merci Jacques)
- 5- Substitution de 3 résistances (mauvaise valeur initiale)!
- 6- Commutation Rx / Tx côté FI inopérante via tension DC injectée → CMS R11 de 4.7 kΩ «collée d'un côté»
- 7- Substitution de la 4.7pF (préconisée par DB6NT si trop de gain) par la *100pF* d'origine → plus du tout de grosse oscillation à 139 MHz à Pout=+10dBm, ouf !
 - le collecteur du BFP196 est enfin chargé correctement (sinon magnifique auto-oscillateur)!
- 8- Nettoyage fux résiduel au solvant le mieux possible (malheureusement pas complètement)


3- Mesures comparatives Rx à FI 144 puis 432 MHz

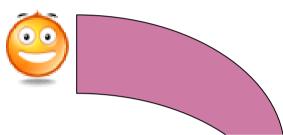
Mesures gain/bruit effectuées en DSB et sans aucun filtre (idem à DB6NT) Source de bruit HP346c, ENR moyen 15 dB

Mesures initiales en réception (avant PBs d'oscillation du BFP196)

Source de bruit HP346c + HP 8970b + mél Marki + géné 18-26 GHz = banc complet

1- FI = 144 MHz, LO = 11952 MHz (préconisé usine)

2- FI = 432 MHz avec LO inchangé = 11952 MHz (Quartz ou synthé Adret à 123.5 MHz + multi x 96)


Les PBs d'oscillation sont arrivés ensuite quelques jours après ces 1ères mesures, «d'un seul coup» et d'une façon totalement inexplicable!

Sur qu'avec la capa initiale aval ridicule de 4.7pF chargeant à peine le BFP81 et son schéma de principe, çà ne pouvait conduire qu'à un bon oscillateur !

Mesures finales après réparation

1- FI = 144 MHz, LO = 11952 MHz (préconisé usine)

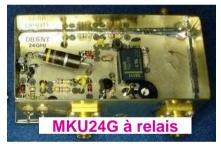
2- FI = 432 MHz avec LO inchangé = 11952 MHz (Quartz ou synthé Adret à 123.5 MHz + multi x 96)

4- Comparaison entre transverters 24 GHz DB6NT (octobre puis décembre 2012)

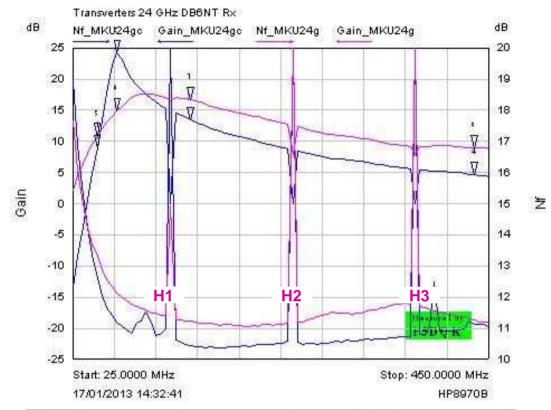
- octobre 2012 : 1ères comparaisons

- décembre 2012 : tableau définitif

Comparatif sur 3 transverters DB6NT à FI=144 puis 432 MHz


Mesures en DSB et sans filtre : octobre 2012 (pour mémoire)

P8970b			ustée à 145 puis							
	Cal zéro gair	n/Nf sur méla	ngeur Mrki + sw	eep 24 GH	z extérieur					
Conditions normale	c d'utilication									
	LO 11952 MF		(=LO utile / 2)							
	LO 11932 MF		(=LO utile / 2)							
-1 432 IVITIZ>	LO 11808 IVIF	12	(=LO utile / 2)							
LO = sweep HP835	50b + timir HP	83590a 2-20	GHz							
20 = 01100p 111 000	000 1 111011 111	000000 2 20	U112							
Transverter	Version	Proprio	I à 12V (mA)	FI (MHz)	LO	LO (MHz)	P_LO (dBm)	Gain (dB)	Nf (dB)	Commentaires
MKU24G	coax/coax	F1PYR	24	145	sweep en CW	11952	15	19,5	11,7	Utilisation normale "usine"
MKU24G	coax/coax	F1PYR	24	145	124,5 MHz x 96	11952	16	19,5	11,38	Utilisation normale "usine"
MKU24G	coax/coax	F1PYR	24	145	sweep en CW	11808	15	21,4	9,8	Meilleur gain avec ce LO ? ?
MKU24G	coax/coax	F1PYR	24	432	sweep en CW	11952	15	12,15	11,35	
MKU24G	coax/coax	F1PYR	24	432	124,5 MHz x 96	11952	16			
MKU24G	coax/coax	F1PYR	24	432	sweep en CW	11808	15	13,07	10,63	
MKU24GC Ersatz	coax/coax	DL	30	145	sweep en CW	11952	16	12,66	9,9	Utilisation normale "usine"
MKU24GC Ersatz	coax/coax	DL	24	145	124,5 MHz x 96	11952	16	12,3	10,05	Utilisation normale "usine"
MKU24GC Ersatz	coax/coax	DL	30	145	sweep en CW	11808	16	13	10,8	
MKU24GC Ersatz	coax/coax	DL	30	432	sweep en CW	11952	16	4,45	13,17	
MKU24GC Ersatz	coax/coax	DL	30	432	sweep en CW	11808	16	4,3	13,24	
	WD 404	E04 N44			0111			40.00		
	WR42/coax	F6AJW	30	145	sweep en CW	11952	15	19,03	18,3	Utilisation normale "usine"
MKU24GA	WR42/coax	F6AJW	30	145	124,5 MHz x 96	11952	16	19,4	8,38	Utilisation normale "usine"
MKU24GA	WR42/coax	F6AJW	30	145	sweep en CW	11808	15	18,5	11,28	
MKU24GA	WR42/coax	F6AJW	30	432	sweep en CW	11952	15	9	10,11	
MKU24GA	WR42/coax	F6AJW	30	432	124,5 MHz x 96	11952	16	9,05	9,85	Sortie LO=SMA male/male dorée
MKU24GA	WR42/coax	F6AJW	30	432	124,5 MHz x 96	11952	16 - 0,25 dB	8,25	10,37	Sortie LO=10cm semirigide SMA male/male
MKU24GA	WR42/coax	F6AJW	30	432	124,5 MHz x 96	11952	16 - 0,25 dB	8,46	10,23	petit cordon souple SMA/SMA
MKU24GA	WR42/coax	F6AJW	30	432	sweep en CW	11808	16	9,18	9,67	Utilisation retenue dans l'ensemble "Alcalel"
MKU24GA	WR42/coax	F6AJW	30	432	LO brique DB6NT	11808	16,6	9,53	9,16	petit cordon souple SMA/SMA
	WR42/coax	F6AJW	30	432	LO brique DB6NT	11808	16,6	10,1	8,88	Sortie LO=SMA male/male dorée
MKU24GA	WR42/coax	F6AJW	30	432	LO brique DB6NT	11808	16,6	9,66	9,15	Sortie LO=10cm semirigide SMA male/male
l Itilication o	n oondit	ion ráall	o /I O intó	riour D	B6NT = 1180	O MILI-	Dout- : 16 1	dDm)		
omisanon e	ii conull	on reen		i ieui D	DOI41 = 1100	O IVI FIZ,	Jul=+10,	J GDIII)		
MKU24GA seul	WR42/coax	F6AJW	30	432	OL DB6NT	11808 int	16,3	7,2	12,75	coax aval BNC/BNC plus court
MKU24GA seul	WR42/coax	F6AJW	30	432	OL DB6NT	11808 int	16,3	6	12,75	
'Alastal complet"			490	422	OL DRENIT	11000 int	16.2	10.0	E 0	Diodo bruit ovent coupleur releis MD49
'Alcatel complet"			480	432	OL DB6NT	11808 int	16,3	19,9	5,8	Diode bruit avant coupleur+relais WR42
								21,5	6,2	fi=144
								1,35		144 direct sur filtre


Comparatif sur 3 transverters DB6NT à FI=144 puis 432 MHz

Mesures avec source de bruit HP346c en DSB, et ENR corrigée

Les pics H1, H2 et H3 proviennent du synthé 124,5 MHz placé devant le multiplicateur, en vue d'obtenir la fréquence OL/2

Mkr	Trace	X-Axis	Value	Notes	
١.	Gain_MKU24gc	50.0000 MHz	9.02 dB		
: 7	Gain_MKU24gc	70.0000 MHz	24.16 dB	version PIN _	
. ₹	Gain_MKU24gc	145.0000 MHz	13.50 dB	Version in _	
+ 7	Gain_MKU24gc	435.0000 MHz	4.66 dB		
. ₹	Gain_MKU24g	50.0000 MHz	10.87 dB		
7	Gain_MKU24g	70.0000 MHz	14.80 dB	version relais	
1 🎖	Gain_MKU24g	145,0000 MHz	16.69 dB	version relais	
. 7	Gain MKU24a	435,0000 MHz	8.93 dB		

Transverters DB6NT seuls : comparaison finale en Rx à 432 MHz

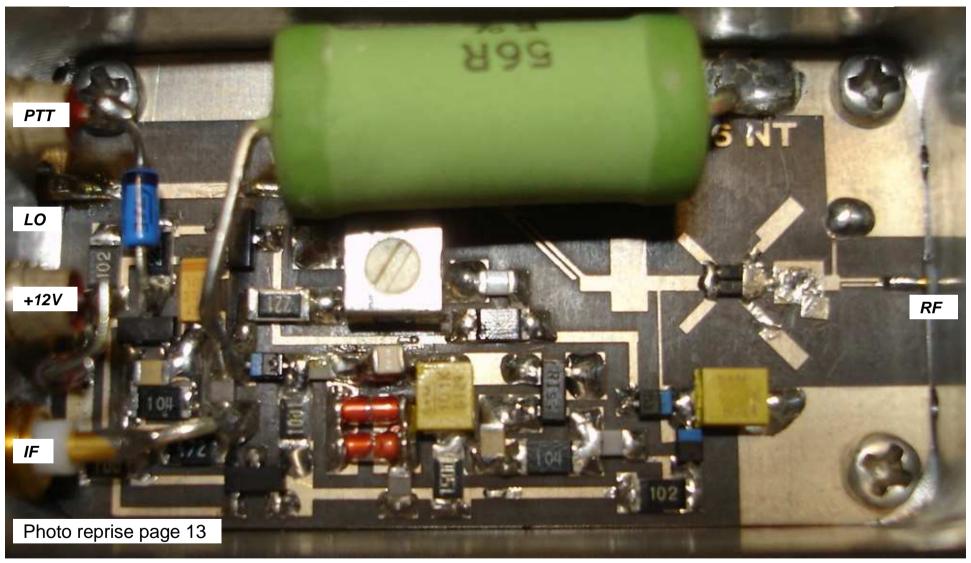
Mesures en DSB et sans filtre : décembre 2012

Mesures dans les mêmes conditions : LO commun de 11952 MHz Etalonnage initial banc 24 GHz complet Fonction 3.0 → FI 144 puis ensuite 432 MHz

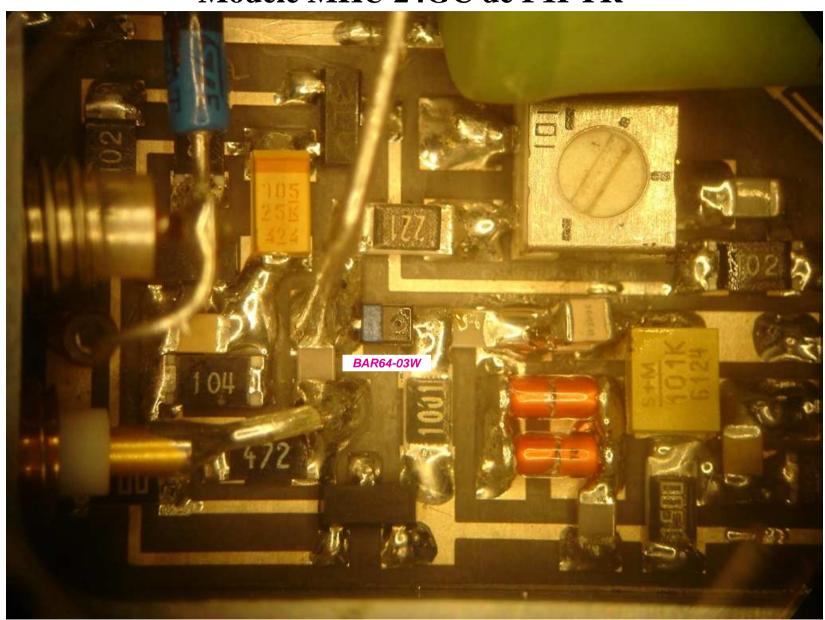
Modèle	Proprio	Gain 144 (dB)	Nf 144 (dB)	Gain 432 (dB)	Nf 432 (dB)	Observations
MKU24GA	F6AJW	13	8	7.2	12.7	WR42 à diodes PIN
MKU24G	F1DBE	20.6	7.55	13	7.8	WR42 à relais interne
MKU24G	F1PYR	19.5	11.7	11.2	12.1	Coax à relais interne
MKU24GC	F5DQK	17.5	9.8	9.0	10.6	Coax à diodes PIN – <u>clone réparé</u>
MKU24GC	F1PYR	14.6	9.2	4.25	9.6	Coax à diodes PIN

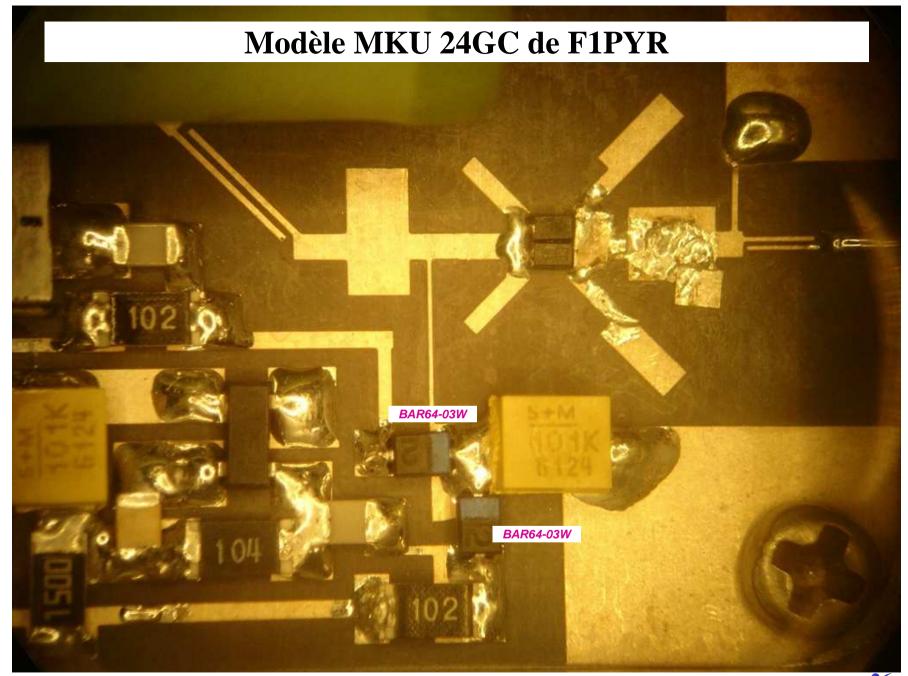
Conclusion pour la version MK3 à diodes PIN par rapport à la MK1 à relais :

- à 144 MHz, gain du MK3 déjà de 6 à 10 dB plus faible
- à 432 MHz, gain dans tous les cas systématiquement plus faible de 6 à 7 dB

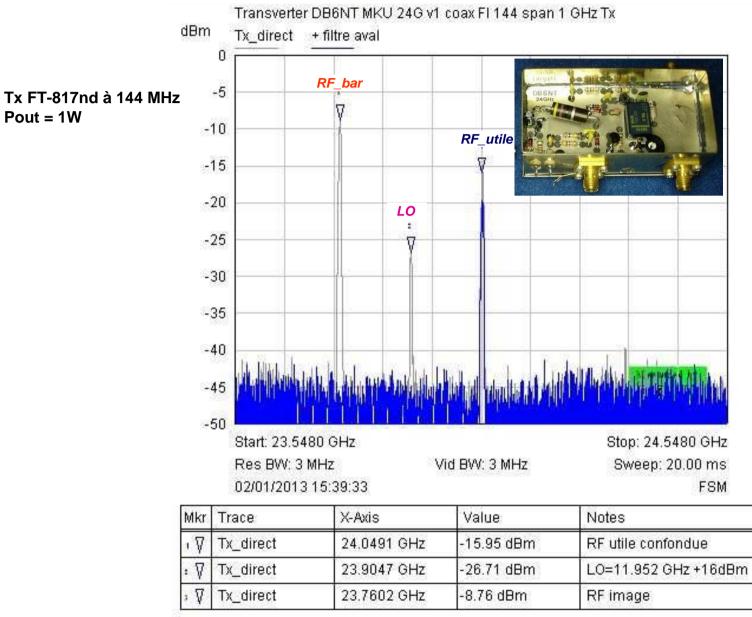

La version MK3 à diodes PIN est totalement inutilisable à 432 MHz (gain << = 10dB)

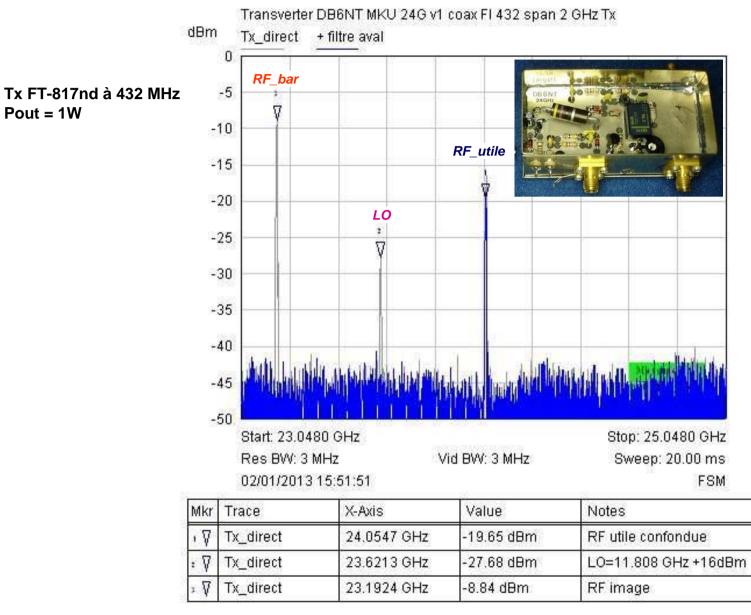
La version MK1 à relais convient encore à 432 MHz, mais avec performances moindres qu'à 144 MHz


5- Transverter 24 GHz MK3 de F1PYR : vues intérieures

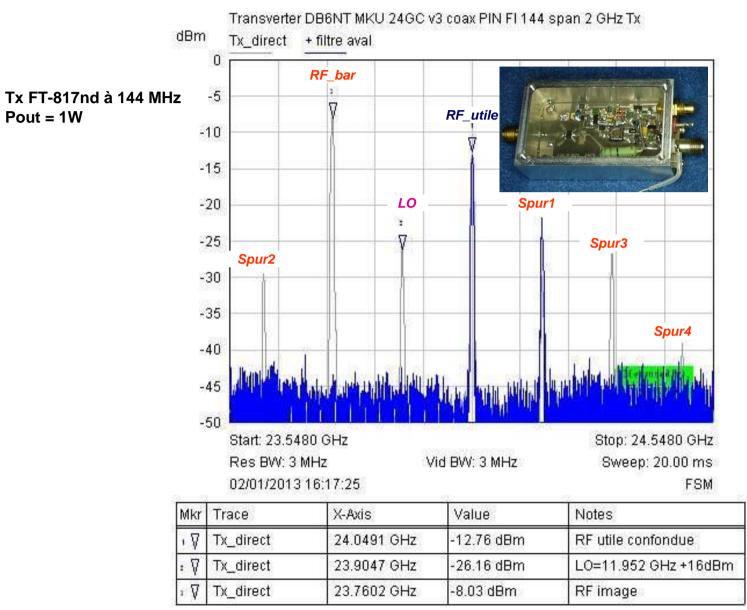

- (pour mémoire)

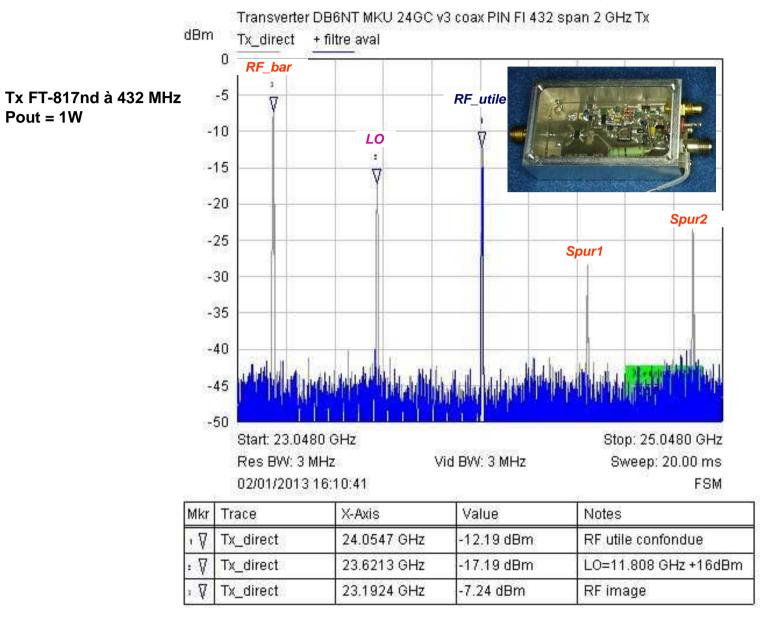
Modèle MKU 24GC de F1PYR

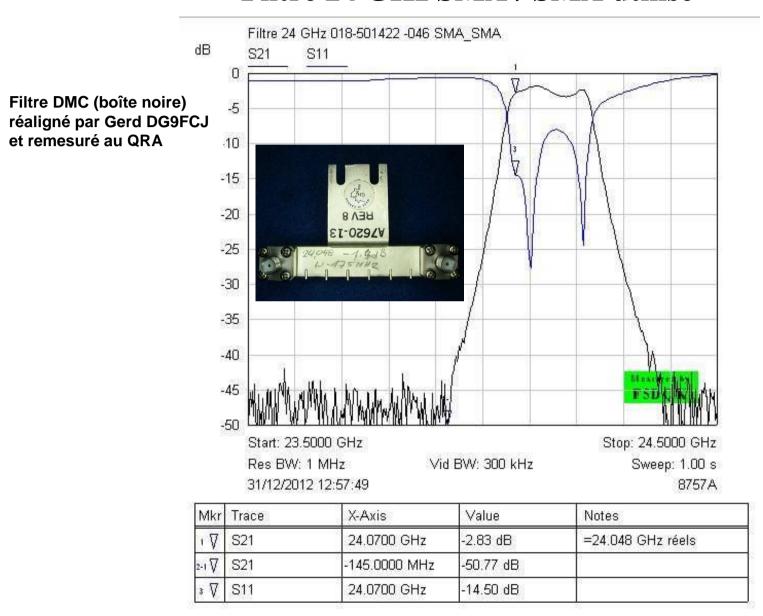

Modèle MKU 24GC de F1PYR



5- Mesures comparatives Tx à FI 144 puis 432 MHz, sans et avec filtre


MKU 24G à relais, FI 144 MHz, sans et avec filtre


MKU 24G à relais FI 432 MHz, sans et avec filtre


MKU 24GC à diodes PIN FI 144 MHz, sans et avec filtre

MKU 24GC à diodes PIN FI 432 MHz, sans et avec filtre

Filtre 24 GHz SMA / SMA utilisé

Conclusion en Tx

Dans tous les cas, le modèle à relais classique a déjà une propreté de signal bien meilleure que son homologue à diodes PIN

Le rôle du filtre inséré en sortie est primordial (pics bleus)

Mais même avec le filtre inséré en sortie, le modèle à diodes PIN génère encore des spurious à F>24 GHz (*pics noirs*)

NB:

- Sur qu'avec un seul exemplaire de chaque sorte, on ne peut pas en tirer une généralité. Néanmoins la question se pose malgré tout
- Dans la version à PIN, le pic utile 24.048 GHz est néanmoins plus fort → mais dans tous les cas la puissance totale de sortie mesurée sans filtre avec tout bolomètre n'est vraiment qu'indicative
- A moins que la bande 20-26 GHz devienne un jour aussi occupée que la bande WBFM, le rôle de ce filtre ne <u>sert essentiellement qu'en émission</u> (DMC ne l'utilise d'ailleurs qu'ainsi)

6- Remerciements

Conclusion, remerciements

En position Rx si l'on vise une FI de 432 MHz, le modèle transverter DB6NT MK3 à diodes PIN ne convient pas du tout, et seul l'ancien modèle MK1 à relais classique reste encore utilisable

Si l'on regarde la concurrence :

- la boîte Noire DMC une fois adaptée à 432 ou 1200 MHz est bien mieux appropriée
- mais en absence de LNA front-end «de course», la Boîte Blanche une fois transformée possède des specs gain/bruit largement supérieures! Reste alors à rajouter la compatibilité de «VOX-DC» prévue d'origine sur tout modèle DB6NT

En position Tx, le modèle MK1 à relais reste encore le plus propre.

Même au-dessus de 24.048 GHz, l'adjonction du filtre gabarit n'arrive pas à éliminer complètement les spurious générés par le modèle transverter DB6NT MK3 à diodes PIN!! NB: sans filtre, ne tirer absolument aucune conclusion d'une mesure de puissance Tx

Sincères remerciements à Jacques F6AJW, Jeff F1PDX, Sylvain F6CIS, André F1PYR, et Jean-Pierre F1DBE, sans lesquels cette synthèse aurait été totalement impossible à réaliser