Using Mmana simulator

By M. Pertus F5DQK

A couple of months ago, I was interested in spending time on yagi simulation and possible softs used for this. Previously with PC computers, the choice was only restricted to DOS programs. Other Windows compatible simulators are now well known like EZNEC, Yagi Optimizer of K6STI (not free but not available any more .. would be interested !!), Yagicalc of John Drew WK5DJ directly calculating yagis derived from DL6WU designs (more intended to 200 Ohms). All of them can only simulate yagis, but no HB9CV (with or without serial capacitor) or more complex examples drawn in three dimensions (quads, or yagis with traps like the Jaybeam DBM6/4 design).

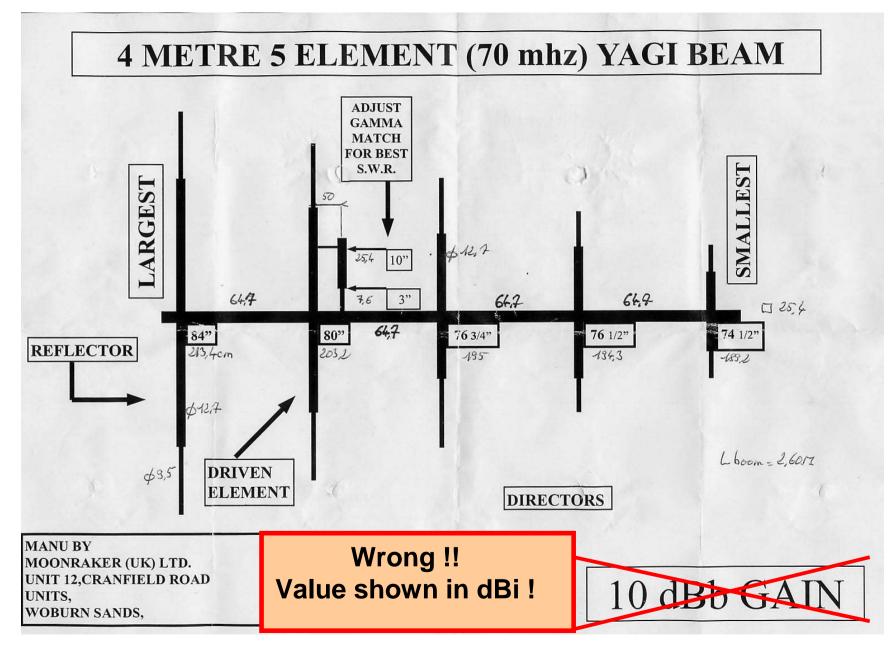
Why did I choice Mmana? It has all what you can want because it :

- is free, made by Gary DL2KQ/EU1TT a german/russian OM. Version 3 direct download is possible at *dl2kq.de/mmana/4-7.htm* and also on many other sites.

- is written with MININEC basis (Mini Numerical Electromagnetics Code). All hits and tips can be found on

http://www.smeter.net/antennas/mmana.php

- is really userfriendly to need and directly written for Windows.
- is possible to design a 3-dimensional graphical antenna (not only in a plan like a conventional yagi). You can also expect the mutual vertical influences between 2 horizontal polarised yagis versus vertical distance.
- can do a design at any other impedance as 50 Ohms (DK6ZB 12 and 28 Ohms designs with pretty F/B ratios).


- can be installed from the web on a Windows XP, 2000, XT, 98 ME, 98 SE, 98, or 95 computer (exe file only 713 kB with added library). And it doesn't mark anything in the register basis!!

Also free, Gary maintains on his site a huge library of MMANA antenna files that he frequently adds to (principally on SW, but also up to 1296 MHz). Tonna yagis are also designed. All MMANA users should know about it, because it contains a wealth of antenna designs that can be used as-is or modified to suit individual needs and experimental curiosities.

With the elements diameter, the yagi type (50 Ohms direct or gamma/hairpin), the whole boomlength and the element number, it is possible beginning to simulate it. The converging possibility, i.e. the possibility of getting best gain, front/back ratio compromise for a given boomlength is really not bad.

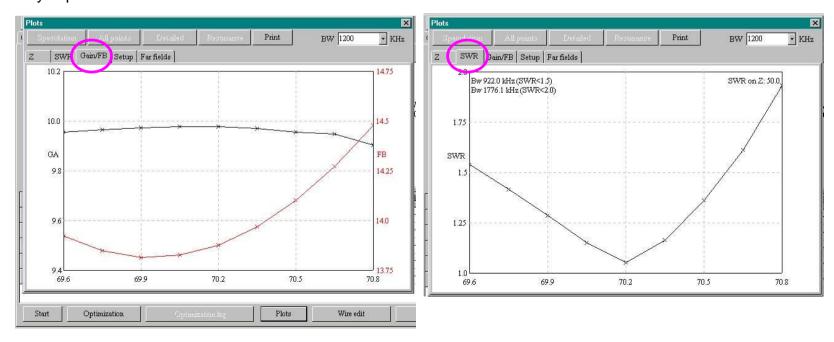
Three examples applicated to the MOONRACKER YG5-4, the TRIDENT 4M4L and the JAYBEAM DBM4-4/6 yagis are briefly explained using screen snapshots.

First example the (buyed) YG5-4 Moonracker dimensions

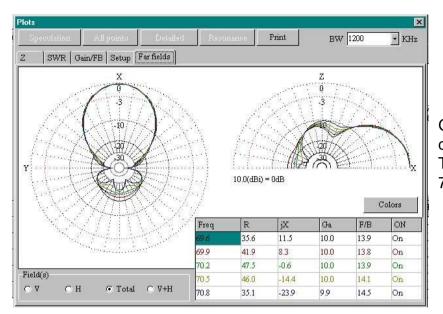
Enter dimensions (metric), either the space between elements or the element position on the boom. Its total length is 2.59M Note that you must enter the element RADIUS, not its diameter. Then the Yagi drawing can directly be seen

Hime 0.647 2.134 0.0 0.0 6.5 1 1 Hompl Active 2.032 0.05 0.0 Mixt -1 6 Hime 0.647 2.032 0.0 0.0 6.5 -1 1 Hime 0.647 2.032 0.0 0.0 6.5 -1 1 Hime 0.647 1.95 0.0 0.0 6.5 -1 1 Hime 0.647 1.943 0.0 0.0 6.5 -1 1 Hime 0.647 1.892 0.0 0.0 6.5 -1 1	🕼 Moonracker YG5-6 à 70 MHz avec Gamma mach vertical, boom 2.60m F5DQK 📃 🗖 🗙								- O ×									
Hime 0.647 2.134 0.0 0.0 6.5 1 1 H compl Active 2.032 0.05 0.0 Mixt -1 6 H line 0.647 2.032 0.05 0.0 Mixt -1 6 H line 0.647 2.032 0.0 0.0 6.5 -1 1 H line 0.647 1.95 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.892 0.0 0.0 6.5 -1 1	arame	ters View	Change	only end poins		C Change all co	oportional	у	Param	eters View	Change only end poins			C Change all c	ll coordinates proportionaly		y	
Hime 0.647 2.134 0.0 0.0 6.5 1 1 Hompl Active 2.032 0.05 0.0 Mixt 1 6 Hime 0.647 2.032 0.0 0.0 6.5 1 1 Hime 0.647 2.032 0.0 0.0 6.5 0 1 Hime 0.647 2.032 0.0 0.0 6.5 1 1 Hime 0.647 2.032 0.0 0.0 6.5 1 1 Hime 0.647 2.932 0.0 0.0 6.5 1 1 Hime 0.647 1.95 0.0 0.0 6.5 1 1 Hime 0.647 1.943 0.0 0.0 6.5 1 1 Hime 0.647 1.892 0.0 0.0 6.5 1 1	No.	Form	Int.(m)	Width(m)	Feight(m)	Length(m)	R(mm)	Seg.	Wires	No.	Form	Int.(m)	Width(m)	l eight(m)	Length(m)	R(mm)	Seg.	Wires
H line 0.647 1.95 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.943 0.0 0.0 6.5 -1 1 H line 0.647 1.992 0.0 0.0 6.5 -1 1	-	H line			0.0	0.0		-1	1	1	H line	0.0	2.154	0.0	0.0	6.5	0	1
Hine 0.647 1.943 0.0 0.0 6.5 -1 1 Hine 0.647 1.943 0.0 0.0 6.5 -1 1 Hine 0.647 1.992 0.0 0.0 6.5 -1 1		H compl	Active	2.032	0.05	0.0	Mixt	-1	6	2	H line	0.647	2.032	0.0	0.0	6.5	0	1
H line 0.647 1.892 0.0 0.0 6.5 -1 1 H line 2.588 1.892 0.0 0.0 6.5 0 1	_	H line	0.647	1.95	0.0	0.0	6.5	-1	1	3	H line	1.294	1.95	0.0	0.0	6.5	0	1
		H line	0.647	1.943	0.0	0.0	6.5	-1	1	4	H line	1.941	1.943	0.0	0.0	6.5	0	1
xt and and <td></td> <td>H line</td> <td>0.647</td> <td>1.892</td> <td>0.0</td> <td>0.0</td> <td>6.5</td> <td>-1</td> <td>1</td> <td>5</td> <td>H line</td> <td>2.588</td> <td>1.892</td> <td>0.0</td> <td>0.0</td> <td>6.5</td> <td>0</td> <td>1</td>		H line	0.647	1.892	0.0	0.0	6.5	-1	1	5	H line	2.588	1.892	0.0	0.0	6.5	0	1
	ext									next	1							

Gamma, té match, hairpin have to be hand drawn. In this case, you must also enter an equivalent serial capacitor. SWR 'll be affined by entering more times new values of C in pF, and adjusting the gamma diameter and spacement to the dipole


🛞 D:\@(haud\Mmana	library\YAGI	S\Yagi 70 MHz\	YG5-6\YG5-6_	Gamma.maa				🕲 D:\@Chaud\Mmana_library\YAGIS\Yagi 70 MHz\YG5-6\YG5-6_Gamma.maa 📃 📃
File Edit	Service Tool	s Help							File Edit Service Tools Help
0 0									
		ulate Far field	plots]						Geometry View Calculate Far field plots
	20		avec Gamma mach	vertical, boom 2.	60m I Fre	70.2	• MHz	🗖 lambda	Rotate around : C Selected wire 📀 Midle point of antenna C X=0, Y=0, Z=H Save image
Wires 10			ntation: DM1 40		12 11 12 11 12 12 12 12 12 12 12 12 12 1	2 •	and the second s	Keep connect.	©Source ×Leed
No.	X1(m)	Y1(m)	Z1(m)	X2(m)	Y2(m)	Z2(m)	R(mm)	Seg.	
1	c	0.0	0.0	0.0	1.016	0.0	6.5	-1	in the second
2	0.0	-1.016	0.0	0.0	-0.17	0.0	6.5	-1	
3	0.0	-0.17	0.0	0.0	0.0	0.0	6.5	-1	
4	0.0	-0.17	-0.05	0.0	0.0	-0.05	6.5	-1	
5	0.0	-0.17	0.0	0.0	-0.17	-0.05	3.0	-1	
6	0.0	0.0	0.0	0.0	0.0	-0.05	3.0	-1	
7	-0.647	-1.067	0.0	-0.647	1.067	0.0	6.5	-1	Wire No.1
8	0.647	-0.975	0.0	0.647	0.975	0.0	6.5	-1	X1 0.0 m
9	1.294	-0.9715	0.0	1.294	0.9715	0.0	6.5	-1	Y' YI 00m ZI 00m
Sources 1	- 27	🔽 Auto Voltag	ze	Loads 1	🔽 Use	loads		H. Alla	X2 : 00 m Y2 : 1016 m
No.	PULSE	Phase dg	Volt. V	No.	PULSE Typ	e L(uH)	C(pr) 0	Q f(MHz)	Z2 : 00 m R : 65 mm
1	w/6c	0.0	1.0	1	wr6c LC	0.0	32.0 0	na l	Length : 1.016 m
next				next					Azim. : 90.0 deg Zenith : 90.0 deg
	-			-					
									Zoom Currents Zoom currents Selected wire T Pen width x 2
								1	Segments
16				1192-					

Making a first calculation directly gives all the wanted caracteristics

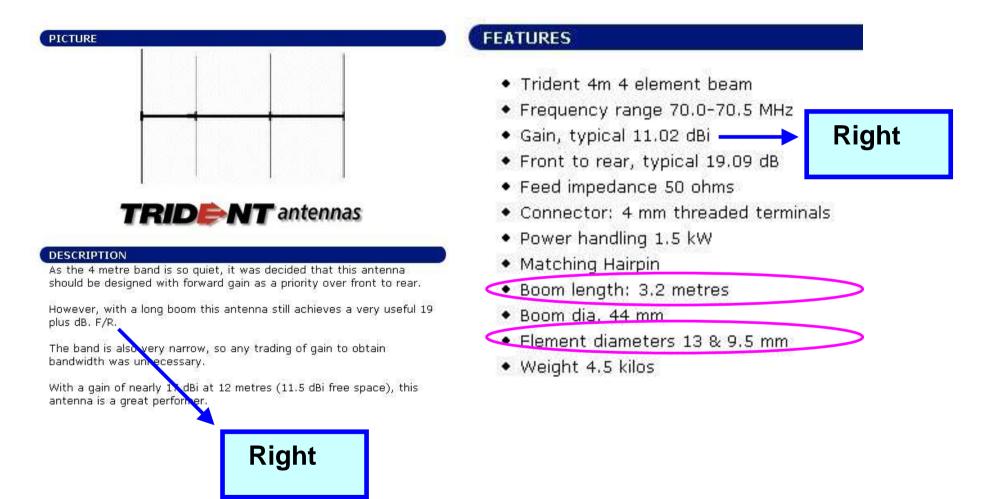

Free J0.2 MHz TOTAL PULS Ground FACTOR MA © Free space PULSE U	X	5					
C Perfect C Real C Real Material No loss	「(♥) 00+j0.00 ATA	I (mA 21.05+		Z (Ohn 47.50-jū		SWR 1.05	
No. F (MHz) R (Ohm) (2 (Ohm) CHIN 55.0		Cumi	Ing in	Flore	Ground	Add H.	Polar.
1 70.2 47.498 -0.56 1.05	7.83	9.98	13.88	0.0	Free		hon.

Best gain obtained **7.83 dBd** or **9.98 dBi** (right, according to the optimistic value given by Moonracker) Front/back ratio 13.9 dB (bad because of equal elements spacement ... it's sure a TV translated design !!!

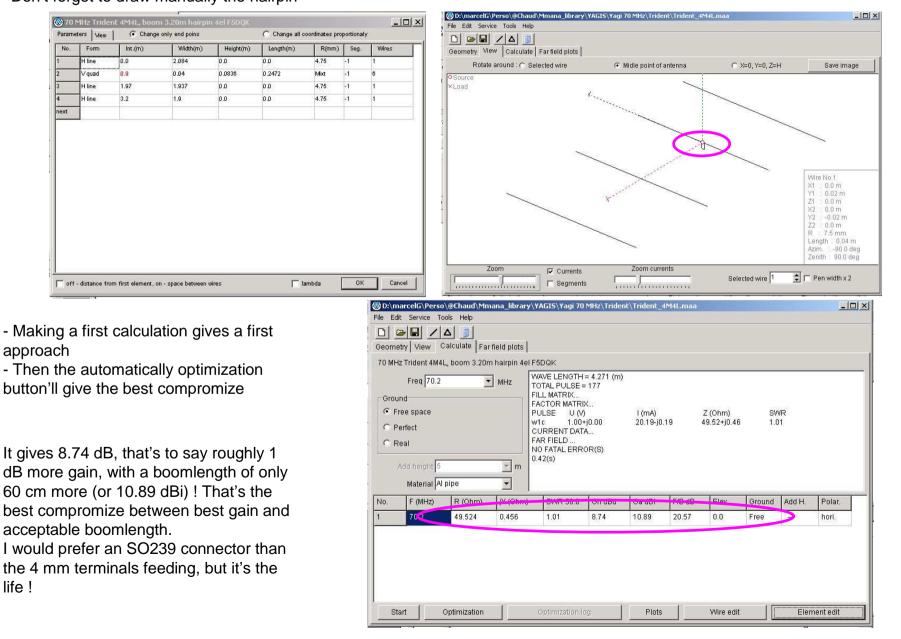
Asking plots gives you either gain/jx couple versus frequency, and the required SWR. Any impedance different from 50 Ohms can be selected

Antenna diagram is given at 4 frequencies in free space. It can also be given in real heigth conditions above ground.

Gain shown here is in dBi (utopic and not exploitable). That's the dBd value + 2.15 dB The F/B ratio becomes better with a higher frequency .. Look at 70.8 MHz !!

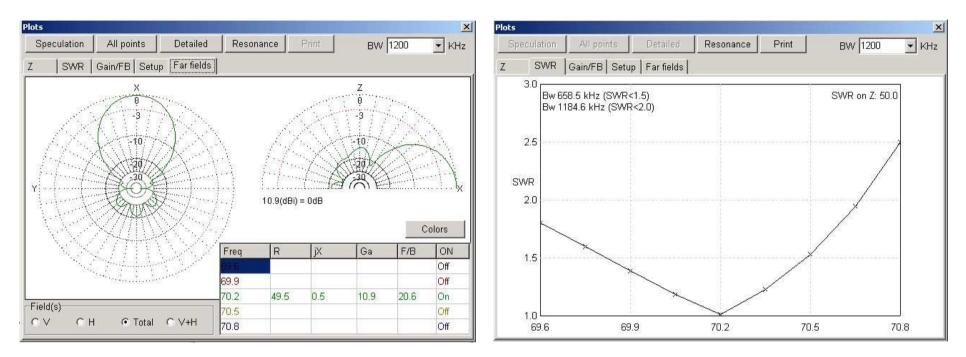

SWR'll be then affined :

- by entering manually other C values or gamma tube diameter and spacement changings to dipole.


- then automatically with the optimisation button. While looking the antenna drawing, you can see the element spacement or gamma length and position changings. That's the converging way, with targed beeing the best gain / front to back ratio compromise (with some limitations).

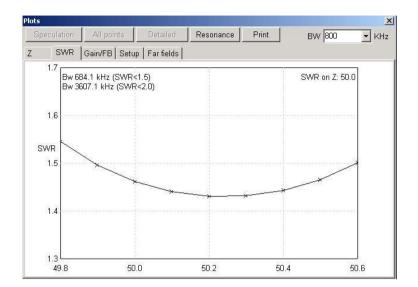
Second example, the Trident 4M4L with hairpin adaptation

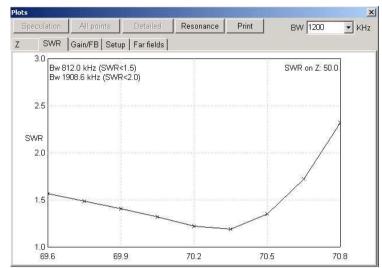
Looking at Nevada add in eBay.co.uk gives following details



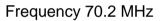
Both most important parameter are its boomlength and element diameter. Then the Yagi drawing can directly be seen Enter the element RADIUS (dipole 6.5 and elements 4.75 or 5), then an approximated space between elements or the element position, giving a total length boom of approximately 3.20M. Don't forget to draw manually the hairpin

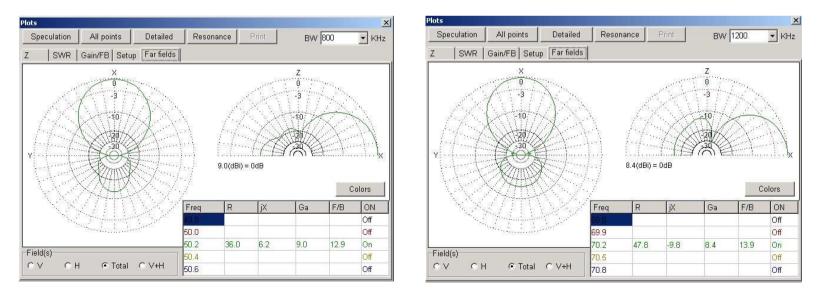
The F/B ratio is now really marvellous.


Its SWR curve obtained in practical conditions is always better than the one simulated shown !



You can also try to lengthen or straighten the boomlength in order to see its influence on gain while keeping at 50 Ohms impedance, but the *best gain compromise is only obtained with 3.60 M total boomlength* !!!


Third (very) brief related example, the Jaybeam 50 & 70 MHz DBM4-4/6, 4 element yagi with traps


😻 Wide E	Band 50.2		iz 4el, boom 3m i	F5DQK	-				×	D:\marcelG\Perso\@Chai	d\Mmana_library\YAG	IS\Yagi 50&70 MHz\DBM4_4&6\50&7	0 4el lavheammaa	
Parameters	5 Mew	 Chan 	ige only end poins		C Change all	coordinates pr	oportional	ly.		Edit Service Tools Hel				
No.	Form	Int (m)	Width(m)	Height(m)	Length(m)	R(mm)	Seg.	Wires) 🖂 🖬 🖊 🛆 🍺	1			
1 H	line	0.0	2.75	0.0	0.0	Mixt	-1	3	Ge	eometry View Calculate	Far field plots			
2 H	line	1.17	2.655	0.0	0.0	Mixt	-1	4		Rotate around : 🔿 S	elected wire	Midle point of antenna	C X=0, Y=0, Z=H	Save imag
3 Н	line	1.95	2.57	0.0	0.0	Mixt	-1	3		Source				
4 H	line	3.0	2.49	0.0	0.0	Mixt	-1	3	. ×L	.oad		T		
										Zoom	V. V. V. V. V. V. V. V. V. V.	Zoom currents		Wire No.1 X1 : 0.0 m Y1 : -1.0 m Z1 : 0.0 m X2 : 0.0 m Y2 : -1.327 m Z2 : 0.0 m R : 4.0 mm Length : 0.327 i Azim. : -90.0 de Zenith : 90.0 de
elG\Perso\@ iervice Tools 	Help		\ YAGIS\Yagi 50&70	MH2\DBM4_4&	6\50&70_4el_Ja	aybeam.maa				- It is verv		stay near 50 Ohr	ns on both	bands
d 50.2 / 70.3	3 MHz 4el,	boom 3m F	5DQK							•		•		
req 70.2	•		WAVE LENGTH = 4 TOTAL PULSE = 16 FILL MATRIX FACTOR MATRIX	56						-	-	in, SWR min and freak knows it w	• • •	
space ct			PULSE U (V) w7b 1.00+j0.0 CURRENT DATA FAR FIELD NO FATAL ERROR			Z (Ohm) 7.77-j9.78	SW 1.2			- Again the	best com	promise for a do	uble band y	agi design
height 17 aterial Al pip	pe		0.33(s)							- A five ele	ment with	this conception o	loesn't wor	k !!
All and the second second	R (Ohm)	jX (Ohm)		n dBd Gadl	an i constante a constante		Ground	Add H. Pol	r.					
aterial Al pir (MHz)		•	SWR 50.0 GH 1.23 6.3 1.43 6.8	27 8.42	Bi F/B dB 13.89 12.94	0.0	Ground Free Free							
Opt	timization	1	Optimization log	P	lots	Wire edit	1	Element e	t [

Frequency 50.2 MHz

SWR and F/B ratio at both frequencies

I'd do about 500 designs, the target beeing principally six and four meter ones (HB9CV's up to 5 elements, with and without serial capacitor, quads, quagis, yagis also with traps like the Jaybeam DBM4/6, etc). Results can be asked free

Want to know more ?? Find all hits and tips using MMANA on <u>http://www.smeter.net/antennas/mmana.php</u> Many softs and ideas can be seen in <u>http://website.lineone.net/~g4kgu/Software.htm</u> page